Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature effective surface

Schematic illustrations of the effect of temperature and surface density (time) on the ratio of two isotopes, (a) shows that, generally, there is a fractionation of the two isotopes as time and temperature change the ratio of the two isotopes changes throughout the experiment and makes difficult an assessment of their precise ratio in the original sample, (b) illustrates the effect of gradually changing the temperature of the filament to keep the ratio of ion yields linear, which simplifies the task of estimating the ratio in the original sample. The best method is one in which the rate of evaporation is low enough that the ratio of the isotopes is virtually constant this ratio then relates exactly to the ratio in the original sample. Schematic illustrations of the effect of temperature and surface density (time) on the ratio of two isotopes, (a) shows that, generally, there is a fractionation of the two isotopes as time and temperature change the ratio of the two isotopes changes throughout the experiment and makes difficult an assessment of their precise ratio in the original sample, (b) illustrates the effect of gradually changing the temperature of the filament to keep the ratio of ion yields linear, which simplifies the task of estimating the ratio in the original sample. The best method is one in which the rate of evaporation is low enough that the ratio of the isotopes is virtually constant this ratio then relates exactly to the ratio in the original sample.
The newly formed y-Mn02 actually coats the surfaces of the particles of the soHd phase the MnSO dissolves in the Hquid phase, along with the majority of the ore impurities. The effective surface area is expanded by the etching action of the sulfuric acid. Following the acid treatment step, the slurry is filtered and the cake is carefiiUy washed and dried at a controlled temperature. [Pg.511]

A = effective surface area for heat and mass transfer in m L = latent heat of vaporization at in kj/kg k = mass-transfer coefficient in kg/ (sm kPa) t = mean source temperature for all components of heat transfer in K t = Hquid surface temperature in K p = Hquid vapor pressure at in kPa p = partial pressure of vapor in the gas environment in kPa. It is often useful to express this relationship in terms of dry basis moisture change. For vaporization from a layer of material ... [Pg.241]

The effective surface viscosity is best found by experiment with the system in question, followed by back calculation through Eq. (22-55). From the precursors to Eq. (22-55), such experiments have yielded values of [L, on the order of (dyn-s)/cm for common surfactants in water at room temperature, which agrees with independent measurements [Lemhch, Chem. Eng. ScL, 23, 932 (1968) and Shih and Lem-lich. Am. Inst. Chem. Eng. J., 13, 751 (1967)]. However, the expected high [L, for aqueous solutions of such sldn-forming substances as saponin and albumin was not attained, perhaps because of their non-newtonian surface behavior [Shih and Lemhch, Ind. Eng. Chem. Fun-dam., 10, 254 (1971) andjashnani and Lemlich, y. Colloid Inteiface ScL, 46, 13(1974)]. [Pg.2021]

Changes in surface temperature elsewhere in the globe are likely to have a lesser impact on carbon or DMS production. For example, the warming that a doubling of atmospheric COj could produce in the Southern Ocean has been modelled to lead to decreased carbon uptake, but enhanced biological productivity, due to the temperature effect on phytoplankton growth." This would lead to an approximately 5% increase in DMS production and a lesser increase in CCN. There is thus a negative feedback here, but only of minor impact. [Pg.32]

Alternative algorithms employ global optimization methods such as simulated annealing that can explore the set of all possible reaction pathways [35]. In the MaxFlux method it is helpful to vary the value of [3 (temperamre) that appears in the differential cost function from an initially low [3 (high temperature), where the effective surface is smooth, to a high [3 (the reaction temperature of interest), where the reaction surface is more rugged. [Pg.215]

Figure 1 determines the foregoing temperature effect and is easier to use than the equation or a nomograph proposed by Kharbanda for this relation. The results are fairly accurate, provided the temperatures for which the surface tensions are considered are not close to the critical temperature of the material in question. Best results are obtained for nonpolar compounds. [Pg.358]

Figure 8.53 gives measured values of the radiant temperature, which means Ty - T, caused by an electrical heating panel. The effective surface temperature of the panel can be estimated from the curves, then used to calculate the temperature of a thermometer bulb at a few other places. These results can be compared to measured results. [Pg.666]

The temperature for methane and butane calculated with the isothermal model is a factor 1.4 times greater than the average temperature measured by Lihou and Maund (1982) in their small-scale tests, although higher local maximum temperatures were measured. In this model, combustion is stoichiometric, thus leading to very high fireball temperatures which, in turn, lead to high radiation emissions. Effective surface emissions measured experimentally were one-half the value calculated from this model, because combustion is not stoichiometric and emissivity is less than unity. [Pg.174]

Myers, J. R., Crow, W. B., Beck, F. H. and Saxer, R. K., Observation on the Anodic Behaviour of Nickel and Chromium Surface Topography and Temperature Effect , Corrosion, 22, 32 (1966)... [Pg.199]

We now describe a relatively simple MD model of a low-index crystal surface, which was conceived for the purpose of studying the rate of mass transport (8). The effect of temperature on surface transport involves several competing processes. A rough surface structure complicates the trajectories somewhat, and the diffusion of clusters of atoms must be considered. In order to simplify the model as much as possible, but retain the essential dynamics of the mobile atoms, we will consider a model in which the atoms move on a "substrate" represented by an analytic potential energy function that is adjusted to match that of a surface of a (100) face-centered cubic crystal composed of atoms interacting with a Lennard-Jones... [Pg.221]

S. Godefroy, M. Fleury, F. Deflandre, J.-P. Korb 2002, (Temperature effect on NMR surface relaxation in rocks for well logging applications),/. Phys. Chem. B 106, 11183-11190. [Pg.338]

Oxidation-reduction Partly The deep-well environment tends to be more reducing than the near-reduction surface environment, but equally reducing conditions occur in the near-surface. Some adjustments may be required for pressure/temperature effects. [Pg.793]

This process is similar to the activated sludge process however, it requires a large surface area to cause more temperature effects than that experience in the activated sludge process. The aeration process in this system supplies oxygen to the influent wastewater and the turbulent generated keeps the contents of the basin in suspension. The suspended solids are then removed in a settling tank where the wastewater may further be treated before discharge.23... [Pg.917]


See other pages where Temperature effective surface is mentioned: [Pg.49]    [Pg.590]    [Pg.127]    [Pg.500]    [Pg.245]    [Pg.476]    [Pg.476]    [Pg.503]    [Pg.1133]    [Pg.1137]    [Pg.2329]    [Pg.942]    [Pg.42]    [Pg.345]    [Pg.1273]    [Pg.1049]    [Pg.283]    [Pg.303]    [Pg.54]    [Pg.167]    [Pg.145]    [Pg.818]    [Pg.101]    [Pg.248]    [Pg.278]    [Pg.216]    [Pg.123]    [Pg.141]    [Pg.39]   
See also in sourсe #XX -- [ Pg.688 ]




SEARCH



Critical surface tension temperature effect

Effect of Temperature on Surface Tension

Effects of Temperature on the Surface Layer

Interfacial temperatures, effect surfaces

Solar radiation effective surface temperature

Surface Film Effects Temperatures

Surface area reduction temperature, effect

Surface excess concentration temperature effect

Surface oxide films, temperature effect

Surface temperatures

Surface tension effect of temperature

Surface tension reduction temperature effect

Temperature and Pressure Effects on Surfaces

Temperature effect on surface

Temperature, effect surface tension

© 2024 chempedia.info