Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Technological demands for fe domain-based devices

Nanometer scale domain configurations in fe bulk crystals pave the way for a new class of photonic devices. As an example, preliminary calculations show that a uv laser (A = 300 nm) based on second harmonic generation in LiTaC 3 crystal requires a periodic nanodomain superlattice with domain widths of around 700 nm. In addition, the current domain gratings in ferroelectric crystals are suitable only for quasi-phase-matched nonlinear interactions in the forward direction, where the pump and generated beams propagate in the same direction. Sub-micron ferroelectric domain gratings are the basis for a new family of devices based on backward nonlinear quasi-phase-matched optical interactions in which the generated beam travels in a reverse or another non-collinear direction to the incident beam. Non-collinear [Pg.191]

10 Ferroelectric Domain Breakdown Application to Nanodomain Technology [Pg.192]

New promising technologies for future electron-beam lithography applications based on pyroelectrically induced electron emission from LiNbOs ferroelectrics [22] were recently proposed [23], The developed system possessing micrometer scale resolution used 1 1 electron beam projection. The needed electron pattern was obtained by means of deposited micrometer-size Ti-spots on the polar face of LiNbOs. Another solution for the high resolution electron lithography may be found in nanodomain patterning of a ferroelectric template. [Pg.192]


See other pages where Technological demands for fe domain-based devices is mentioned: [Pg.191]   


SEARCH



1 demand for

Device technology

© 2024 chempedia.info