Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Domains, ferroelectric

Fig. 3. An overview of atomistic mechanisms involved in electroceramic components and the corresponding uses (a) ferroelectric domains capacitors and piezoelectrics, PTC thermistors (b) electronic conduction NTC thermistor (c) insulators and substrates (d) surface conduction humidity sensors (e) ferrimagnetic domains ferrite hard and soft magnets, magnetic tape (f) metal—semiconductor transition critical temperature NTC thermistor (g) ionic conduction gas sensors and batteries and (h) grain boundary phenomena varistors, boundary layer capacitors, PTC thermistors. Fig. 3. An overview of atomistic mechanisms involved in electroceramic components and the corresponding uses (a) ferroelectric domains capacitors and piezoelectrics, PTC thermistors (b) electronic conduction NTC thermistor (c) insulators and substrates (d) surface conduction humidity sensors (e) ferrimagnetic domains ferrite hard and soft magnets, magnetic tape (f) metal—semiconductor transition critical temperature NTC thermistor (g) ionic conduction gas sensors and batteries and (h) grain boundary phenomena varistors, boundary layer capacitors, PTC thermistors.
In a QPM nonlinear optical process, the waveguide is segmented into regions with alternating anti-parallel ferroelectric domains. For SHG, the... [Pg.201]

The KTP chips are individually immersed in a molten bath of a mixture of RbNOs and Ba(N03)2. Within this bath, the Rb ions diffuse into the unmasked portions of the KTP chip, while the K ions diffuse out of the substrate and into the bath, shown in the illustration in figure 6. In the diffused regions, the rubidium ions increase the index of refraction relative to the undiffused KTP and thus form the optical waveguide. Note that due to the presence of barium, there is an increase in the index of refraction and the ferroelectric domain in the diffused region is reversed and hence the term chemical poling is used for this process. [Pg.204]

Fig. 16a-c. Schematic model of the lamellar structure of the copolymer in the, a. high temperature range (paraelectric phase) b. Curie transition region and c. low temperature region L and I denote respectively the long period and the average crystal thickness comprising a mixture of non ferroelectric and ferroelectric domains... [Pg.25]

Ferroelectric Domain Switching is recognized, different from that in micro-nano type ceramic composites. [Pg.244]

When a ferroelectric single crystal is cooled below the phase transition temperature the electrical stray field energy caused by the non-compensated polarization charges is reduced by the formation of ferroelectric domains, see Figure 1.19. The configuration of the domains follows a head-to-tail condition in order to avoid discontinuities in the polarization at the domain boundary, VP = a. The built-up of domain walls, elastical stress fields as well as free charge carriers counteract the process of domain formation. In addition, an influence of vacancies, dislocations and dopants exists. [Pg.30]

Figure 2.4 Strain-field curves for < 001 > oriented 0.91PbZn1/3Nb2/303-0.09PbTi03 single crystals. The sample in (a) was poled at room temperature, where the resulting domain state is unstable (due to induction of tetragonal material associated with the curved morphotropic phase boundary), yielding substantial hysteresis. In (b) the crystal was poled at low temperatures to keep it in the rhombohedral phase. When measured at room temperature, the piezoelectric response is much more linear and non-hysteretic, due to the improved stability of the ferroelectric domain state. Data courtesy of S. E. Park. Figure 2.4 Strain-field curves for < 001 > oriented 0.91PbZn1/3Nb2/303-0.09PbTi03 single crystals. The sample in (a) was poled at room temperature, where the resulting domain state is unstable (due to induction of tetragonal material associated with the curved morphotropic phase boundary), yielding substantial hysteresis. In (b) the crystal was poled at low temperatures to keep it in the rhombohedral phase. When measured at room temperature, the piezoelectric response is much more linear and non-hysteretic, due to the improved stability of the ferroelectric domain state. Data courtesy of S. E. Park.
Ferroelectric domains have been visualized in the ferroelectric phase in sbn with high resolution piezo-response force microscopy (see Figure 15.8) [23], The domains are found to be needlelike with lengths in the range of 10 to 500 nm and are oriented along the polar c-axis. The dynamics of the domain walls under externally applied electric fields or heating are expected to influence the polarization especially at low frequencies (see domain wall polarization, Chapter 1) [24],... [Pg.166]

When investigating the polar structure by photo-induced light scattering we assume that the largest contribution to the initial optical noise is due to diffraction of the pump beam on optical inhomogeneities located at boundaries of ferroelectric domains [9], Figure 9.12 illustrates this concept schematically. Internal electric fields Ei (random fields) yield local perturbations 5n of the index of refraction via the linear electro-optic effect 5n = - n rssEi. [Pg.181]

Figure 9.12 Seed scattering at refractive index modulations induced by localized internal random fields via the electro-optic effect. The internal fields are also responsible for the formation of a rich ferroelectric domain structure. Here, a periodic sequence of domains with lengths A d is shown. Note, that the grating period of the refractive index modulation As is equal to the lengths of the ferroelectric domains. Figure 9.12 Seed scattering at refractive index modulations induced by localized internal random fields via the electro-optic effect. The internal fields are also responsible for the formation of a rich ferroelectric domain structure. Here, a periodic sequence of domains with lengths A d is shown. Note, that the grating period of the refractive index modulation As is equal to the lengths of the ferroelectric domains.
Ferroelectric Domain Breakdown Application to Nanodomain Technology... [Pg.189]

The major trends in ferroelectric photonic and electronic devices are based on development of materials with nanoscale features. Piezoelectric, electrooptic, nonlinear optical properties of fe are largely determined by the arrangement of ferroelectric domains. A promising way is a modification of these basic properties by means of tailoring nanodomain and refractive index superlattices. [Pg.189]


See other pages where Domains, ferroelectric is mentioned: [Pg.85]    [Pg.96]    [Pg.118]    [Pg.128]    [Pg.130]    [Pg.253]    [Pg.56]    [Pg.89]    [Pg.116]    [Pg.78]    [Pg.26]    [Pg.45]    [Pg.339]    [Pg.124]    [Pg.253]    [Pg.11]    [Pg.30]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.163]    [Pg.164]    [Pg.166]    [Pg.181]    [Pg.182]    [Pg.184]    [Pg.184]    [Pg.189]    [Pg.190]    [Pg.191]   
See also in sourсe #XX -- [ Pg.215 , Pg.252 ]

See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.534 , Pg.535 ]

See also in sourсe #XX -- [ Pg.206 , Pg.208 ]




SEARCH



Domain ferroelectric domains

Domain walls ferroelectric

Ferroelectric domain breakdown

Ferroelectric domain breakdown mechanism

Ferroelectric domain switching

Ferroelectric domains switching method

Ferroelectric/piezoelectric domains

Indirect electron beam induced ferroelectric domain breakdown

© 2024 chempedia.info