Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Application tantalum

An interesting field of application is the protection of tantalum against hydrogen embrittlement by electrical connection to platinum metals. The reduction in hydrogen overvoltage and the shift of the free corrosion potential to more positive values apparently leads to a reduced coverage by adsorbed hydrogen and thereby lower absorption [43] (see Sections 2.1 and 2.3.4). [Pg.484]

In many applications tantalum can be substituted for platinum and gold, and there are some environments in which tantalum is more corrosion resistant than platinum. Table 3.37 lists the main chemicals for which tantalum is not a suitable substitute for platinum and, conversely, those for wliich tantalum is better than platinum. Tantalum is rapidly embrittled by nascent hydrogen even at room temperature. Therefore, it is very important to avoid the formation of galvanic couples between tantalum and other metals. [Pg.97]

Gold can be used only in very small portions or very thin coatings because of its cost. Most of the applications for wliich it was used in the past have now been accomplished with tantalum at a much lower cost. A gold/ platinum/rhodium alloy is used in the manufacture of rayon-spinning jets in the production of rayon fibers. This alloy presents the combination of strength, corrosion resistance and abrasion resistance necessary to prevent changes in hole dimensions. [Pg.99]

Niobium finds use in the production of numerous stainless steels for use at high temperatures, and Nb/Zr wires are used in superconducting magnets. The extreme corrosion-resistance of tantalum at normal temperatures (due to the presence of an exceptionally tenacious film of oxide) leads to its application in the construction of chemical plant, especially where it can be used as a liner inside cheaper metals. Its complete inertness to body fluids makes it the ideal material for surgical use in bone repair and internal suturing. [Pg.978]

Niobium like tantalum relies for its corrosion resistance on a highly adherent passive oxide film it is however not as resistant as tantalum in the more aggressive media. In no case reported in the literature is niobium inert to corrosives that attack tantalum. Niobium has not therefore been used extensively for corrosion resistant applications and little information is available on its performance in service conditions. It is more susceptible than tantalum to embrittlement by hydrogen and to corrosion by many aqueous corrodants. Although it is possible to prevent hydrogen embrittlement of niobium under some conditions by contacting it with platinum the method does not seem to be broadly effective. Niobium is attacked at room temperature by hydrofluoric acid and at 100°C by concentrated hydrochloric, sulphuric and phosphoric acids. It is embrittled by sodium hydroxide presumably as the result of hydrogen absorption and it is not suited for use with sodium sulphide. [Pg.854]

The long life and reliability of tantalum equipment in severe-corrosion applications often more than offsets its higher initial costs. Therefore, a new situation has been created for utilising the benefits of tantalum products. When tantalum is properly applied, it can often be justified not only on a field replacement basis but also on initial installation. [Pg.893]

Plants producing and handling halogens and halogen compounds Tantalum finds extensive use in the production and handling of hydrochloric and hydrobromic acid, chlorine and bromine and many of their derivatives. Absorbers, coolers and heaters which show considerable advantages in terms of heat-flux capabilities and corrosion resistance have been used on hydrochloric acid duties for over 40 years and condensers have been used in bromine plants for at least the same period. Typical applications of tantalum in the bromine and chlorine industries are listed in Table 5.27 . [Pg.903]

Table S.27 Typical applications of tantalum equipment in bromine and chlorine industry... Table S.27 Typical applications of tantalum equipment in bromine and chlorine industry...
These anodes are considerably more expensive than platinised titanium, especially when expressed in terms of price per unit volumeIndeed, since niobium is cheaper than tantalum the use of the latter has become rare. The extra cost of Nb anodes may be offset in certain application by their superior electrical conductivity and higher breakdown voltages. Table 10.17 gives the comparitive breakdown potentials of Ti, Nb and Ta in various solutions under laboratory conditions. [Pg.170]

Our life would never be as advanced and comfortable as it is if not for the applications of tantalum and niobium. These materials unique properties ensure their increasing usage in electronic, optic, mechanical, aerospace, nuclear and other modem applications. [Pg.1]

Table 1 presents the distribution of tantalum and niobium processor shipments for 1999, 2000 and 2001. The values presented in Table 1 were estimated based on graphs given by Mosheim in a comprehensive statistical analysis [20]. Breakdown of the total worldwide amount of tantalum and niobium used in 2000 in main applications is given in Figs.l and 2, respectively. [Pg.2]

Another application of tantalum strip solution is in the precipitation of potassium fluorotantalate, K2TaF7, which is used as a precursor in the production of tantalum powder by sodium reduction of melts. [Pg.7]

Since niobates and tantalates belong to the octahedral ferroelectric family, fluorine-oxygen substitution has a particular importance in managing ferroelectric properties. Thus, the variation in the Curie temperature of such compounds with the fluorine-oxygen substitution rate depends strongly on the crystalline network, the ferroelectric type and the mutual orientation of the spontaneous polarization vector, metal displacement direction and covalent bond orientation [47]. Hence, complex tantalum and niobium fluoride compounds seem to have potential also as new materials for modem electronic and optical applications. [Pg.9]

In summary, investigations in the area of the chemistry of tantalum and niobium fluoride compounds will advance tantalum-niobium metallurgy and promote the development of new materials for modem applications. [Pg.10]

MsNbjOFig compounds, in which M = K. or Rb, were investigated in greater detail and compared to other related fluoride compounds that contain tantalum or niobium, and are most promising for future practical application in the electronics and optics industries. [Pg.234]

Modem processing of tantalum and niobium metals and their compounds is related to the treatment of fluoride compounds. Hence, successful technological improvements, the development of novel methods and the manufacturing of high-grade products depend on the application of technological achievements in the area of fluorine chemistry. [Pg.253]

Since the fluorination enables to separate components of complex oxide compounds containing tantalum and niobium, it seems that it is applicable for... [Pg.264]

The liquid-liquid extraction (solvent extraction) process was developed about 50 years ago and has found wide application in the hydrometallurgy of rare refractory and rare earth metals. Liquid-liquid extraction is used successfully for the separation of problematic pairs of metals such as niobium and tantalum, zirconium and hafnium, cobalt and nickel etc. Moreover, liquid-liquid extraction is the only method available for the separation of rare earth group elements to obtain individual metals. [Pg.267]

In some cases, the degree of fluorine contamination of tantalum and niobium oxides containing increased fluorine levels is not very critical to the later application of the oxides. Applications related to the manufacturing of optic and electronic devices, however, require significant limitations of the fluorine content of tantalum and niobium oxides. [Pg.292]

Application of an excessive amount of ammonia solution in the precipitation of tantalum and niobium hydroxides from strip solutions usually ensures good quality of the products. Nevertheless, the method has two general problems. First, hydroxides containing low levels of fluorine contamination... [Pg.298]

Kobayashi et al. [508] developed an effective method to control particle size and fluoride content in granular tantalum oxide and niobium oxide. The resultant powders are suitable for application in the manufacturing of ceramics, single crystals, optical glass, etc. [Pg.303]

Other methods exist for the precipitation of tantalum and niobium hydroxides for subsequent use as oxide precursors. Application of ammonium carbonate, (NH4)2C03, instead of ammonia solution, also seems to have potential for the precipitation of tantalum and niobium hydroxides. Ammonium carbonate is relatively stable in aqueous media at room temperature and does not initiate the precipitation of hydroxides. Increasing the temperature of the solution causes hydrolysis and decomposition of ammonium carbonate yielding hydroxyl ions and an increase in pH, as follows ... [Pg.303]

Another application of the electrolysis of tantalum and niobium in fluoride melts is in the preparation of intermetalic compounds as a result of the interaction between the electrochemically precipitating metal and the cathode material. Based on an investigation of the electrochemical reduction of K2TaF7 or K2NbF7 in a LiF - NaF melt on nickel cathodes, Taxil and Qiao [565] determined the appropriate conditions for the formation of TaNi3 or NbNi3 in the form of stable phases in the bulk of the obtained layer. [Pg.324]

The leaching process aims to remove the salts from the metal - salt mixture but also enables to achieve additional purification of the tantalum powder. Keller and Martin [586] found that the application of a leaching solution containing 0.1-10% HF and 0.5-10% H202 leads to a decrease in the oxygen content of the final tantalum powder obtained from the reduction of K2TaF7 with sodium. [Pg.330]

Gruner, Ibold and Naumann [589] proposed the performance of thermal treatment of the cake obtained after sodium reduction of K2TaF7 in vacuum. The application of a temperature of 800-1050°C and a residual pressure of 0.013-1.33 Pa was recommended. The process is performed with intermittent vibration in order to promote the separation of the impurities. It is reported that the resulting tantalum contains 31 and 40 ppm of Na and K, respectively. [Pg.331]

Significant improvement of tantalum powder properties was achieved by the application of molten alkali halides as solvents for potassium heptafluorotantalate, K2TaF7. Variation of the initial concentration of K2TaF7 in the melt, stirring and rate of sodium loading enable a well-controllable production of tantalum powder with a wide variety of specific charges. Heller and Martin [590] proposed the use of a reactor equipped with a stirrer in 1960. Fig. 142 shows a typical scheme of the reactor [24, 576]. All metal parts of the reactor are made of nickel or nickel alloy. [Pg.331]

Rare earth metals, as well as alkali earth metals, can be used as oxygen getters in the purification of tantalum powder. Osaku and Komukai [608] developed a method for the production of tantalum and niobium metal powder by a two-step reduction of their oxides. The second step was aimed at reducing the oxygen content and was performed by thermal treatment with the addition of rare metals. The powder obtained by the described method is uniform, had a low oxygen level and was suitable for application in the manufacturing of tantalum capacitors. [Pg.338]


See other pages where Application tantalum is mentioned: [Pg.49]    [Pg.208]    [Pg.134]    [Pg.481]    [Pg.35]    [Pg.144]    [Pg.894]    [Pg.902]    [Pg.919]    [Pg.170]    [Pg.1]    [Pg.1]    [Pg.7]    [Pg.254]    [Pg.279]    [Pg.283]    [Pg.284]    [Pg.324]    [Pg.327]    [Pg.335]    [Pg.336]    [Pg.337]   
See also in sourсe #XX -- [ Pg.5 , Pg.71 , Pg.75 ]

See also in sourсe #XX -- [ Pg.5 , Pg.71 , Pg.75 ]




SEARCH



© 2024 chempedia.info