Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Systems solvent dependence

Bensasson R V, Bienvenue E, Dellinger M, Leach S and Seta P 1994 Cgg in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation J. Phys. Chem. 98 3492-5000... [Pg.2433]

Obviously, to model these effects simultaneously becomes a very complex task. Hence, most calculation methods treat the effects which are not directly related to the molecular structure as constant. As an important consequence, prediction models are valid only for the system under investigation. A model for the prediction of the acidity constant pfQ in aqueous solutions cannot be applied to the prediction of pKj values in DMSO solutions. Nevertheless, relationships between different systems might also be quantified. Here, Kamlet s concept of solvatochro-mism, which allows the prediction of solvent-dependent properties with respect to both solute and solvent [1], comes to mind. [Pg.488]

Compounding is quite different for the two systems. The solvent base system is dependent on magnesium oxide and a /-butylphenoHc resin in the formulation to provide specific adhesion, tack, and added strength. Neither of these materials have proven useful in latex adhesive formulations due to colloidal incompatibihty. In addition, 2inc oxide slowly reacts with carboxylated latexes and reduces their tack. Zinc oxide is an acceptable additive to anionic latex, however. Other tackifying resins, such as rosin acids and esters, must be used with anionic latexes to provide sufficient tack and open time. [Pg.547]

Strictly speaking Eq. (8-51) should be applied only to reacting systems whose molecular properties are consistent with the assumptions of regular solution theory. This essentially restricts the approach to the reactions of nonpolar species in nonpolar solvents. Even in these systems, which we recall do not exhibit a marked solvent dependence, correlations with tend to be poor. - pp Nevertheless, the solubility parameter and its partitioning into dispersion, polar, and H-bonding components provide some insight into solvent behavior that is different from the information given by other properties such as those in Tables 8-2 and 8-3. [Pg.418]

For copolymerizations between non protie monomers solvent effects are less marked. Indeed, early work concluded that the reactivity ratios in copolymerizations involving only non-protic monomers (eg. S, MMA, AN, VAe, etc.) should show no solvent dependence.100101 More recent studies on these and other systems (e.g. AN-S,102-105 E-VAc,106 MAN-S,107 MMA-S,10s "° MMA-VAc1" ) indicate small yet significant solvent effects (some recent data for AN-S copolymerization are shown in Table 8.5). However, the origin of the solvent effect in these cases is not clear. There have been various attempts to rationalize solvent effects on copolymerization by establishing correlations between radical reactivity and various solvent and monomer properties.71,72 97 99 None has been entirely successful. [Pg.429]

Comparisons with experimental results 147) show that the reliability of this rule increases as the more the copolymerization system increasingly depends on the solvent. This is remarkable because the following crude approximations were used ... [Pg.222]

A number of drawbacks in the application of the 0PA/2-ME reagent system include the instability of the fluorescent isoindole derivative (5-7) the use of the noisome reagent 2-mercaptoethanol the low and solvent-dependent fluorescence efficiencies (8,9) of the isoindole and—perhaps the most limiting—the effective restriction of the OPA assay to primary aliphatic amines and to amino acids. [Pg.128]

Researchers studying polypeptide and polypeptide hybrid systems have also processed vesicles using two solvents. This method usually involves a common organic solvent that solubilizes both blocks and an aqueous solvent that solublizes only the hydrophilic block. The two solvents can be mixed with the polypeptide or polypeptide hybrid system at the same time or added sequentially. The choice of organic solvent depends heavily upon the properties of the polypeptide material, and commonly used solvents include dimethylformamide (DMF) [46, 59], methanol (MeOH) [49], dimethyl sulfoxide (DMSO) [50, 72], and tetrahydrofuran (THF) [44, 55]. Vesicles are usually formed when the organic solvent is slowly replaced with an aqueous solution via dialysis or removed through evaporation however, some vesicles have been reported to be present in the organic/aqueous mixture [49]. [Pg.126]

LC-MS is now a nature technology and operation of an LC-MS system is no longer the realm of an MS specialist. The proper choice of the LC-MS mode to be used in a specific situation depends on analyte class, sample type and problem (detection, confirmation, identification). On-line LC-MS is used more for specialised applications than for general polymer or rubber compound analysis. This derives from the fact that LC-MS method development (column, solvent system, solvent programme, ionisation mode) is rather time consuming. LC-MS (in particular with API interface) enables analysis of a wide range of polar and nonvolatile compounds which cannot be analysed by GC (icf. Scheme 7.7). [Pg.489]

The divalent Co(salen) complex (69a) is one of the most versatile and well-studied Co coordination compounds. It has a long and well-documented history and we shall not restate this here. Recent applications of (69a) as both a synthetic oxygen carrier and as a catalyst for organic transformations are described in Sections 6.1.3.1.2 and 6.1.4.1 respectively. Isotropic shifts in the HNMR spectrum of low-spin Co(salphn) (69b) were investigated in deuterated chloroform, DMF, DMSO, and pyridine.319 Solvent-dependent isotropic shifts indicate that the single unpaired electron, delocalized over the tetradentate 7r-electron system in CHCI3, is an intrinsic property of the planar four-coordinate complex. The high-spin/low-spin equilibrium of the... [Pg.34]

Onium salts, crown ethers, alkali metal salts or similar chelated salts, quaternary ammonium and phosphonium are some of the salts which have been widely used as phase transfer catalysts (PTC). The choice of phase transfer catalysts depends on a number of process factors, such as reaction system, solvent, temperature, removal and recovery of catalyst, base strength etc. [Pg.166]

Decarboxylation of 6-nitrobenzisoxazole-3-carboxylate [52] has been most widely investigated in aqueous systems, since this reaction is remarkably solvent dependent (Kemp and Paul, 1970 Kemp and Paul, 1975 Kemp et al.,... [Pg.464]


See other pages where Systems solvent dependence is mentioned: [Pg.60]    [Pg.78]    [Pg.244]    [Pg.564]    [Pg.112]    [Pg.425]    [Pg.69]    [Pg.267]    [Pg.252]    [Pg.467]    [Pg.520]    [Pg.149]    [Pg.207]    [Pg.467]    [Pg.520]    [Pg.332]    [Pg.27]    [Pg.103]    [Pg.162]    [Pg.216]    [Pg.319]    [Pg.372]    [Pg.268]    [Pg.326]    [Pg.1194]    [Pg.15]    [Pg.235]    [Pg.233]    [Pg.77]    [Pg.162]    [Pg.603]    [Pg.374]    [Pg.521]    [Pg.346]    [Pg.382]    [Pg.591]    [Pg.627]    [Pg.175]    [Pg.248]   


SEARCH



Solvent dependence

Solvent systems temperature dependent

Systems dependence

Temperature-Dependent or Thermomorphic Solvent Systems (TMS)

Temperature-dependent multi-component solvent-systems

© 2024 chempedia.info