Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic polymers methods

Edman degradation (Section 27 13) Method for determining the N terminal amino acid of a peptide or protein It in volves treating the material with phenyl isothiocyanate (CgH5N=C=S) cleaving with acid and then identifying the phenylthiohydantoin (PTH derivative) produced Elastomer (Section 10 11) A synthetic polymer that possesses elasticity... [Pg.1282]

Laser desorption methods are particularly useful for substances of high mass such as natural and synthetic polymers. Glycosides, proteins, large peptides, enzymes, paints, ceramics, bone, and large... [Pg.11]

In addition to an array of experimental methods, we also consider a more diverse assortment of polymeric systems than has been true in other chapters. Besides synthetic polymer solutions, we also consider aqueous protein solutions. The former polymers are well represented by the random coil model the latter are approximated by rigid ellipsoids or spheres. For random coils changes in the goodness of the solvent affects coil dimensions. For aqueous proteins the solvent-solute interaction results in various degrees of hydration, which also changes the size of the molecules. Hence the methods we discuss are all potential sources of information about these interactions between polymers and their solvent environments. [Pg.583]

We have emphasized biopolymers in this discussion of the ultracentrifuge and in the discussion of diffusion in the preceding sections, because these two complementary experimental approaches have been most widely applied to this type of polymer. Remember that from the combination of the two phenomena, it is possible to evaluate M, f, and the ratio f/fo. From the latter, various possible combinations of ellipticity and solvation can be deduced. Although these methods can also be applied to synthetic polymers to determine M, they are less widely used, because the following complications are more severe with the synthetic polymers ... [Pg.641]

The use of flame retardants came about because of concern over the flammabiUty of synthetic polymers (plastics). A simple method of assessing the potential contribution of polymers to a fire is to examine the heats of combustion, which for common polymers vary by only about a factor of two (1). Heats of combustion correlate with the chemical nature of a polymer whether the polymer is synthetic or natural. Concern over flammabiUty should arise via a proper risk assessment which takes into account not only the flammabiUty of the material, but also the environment in which it is used. [Pg.465]

It is established, that the natural and synthetic polymers influence on spectrophotometrical, protolytical and complex-formating properties of azodyes in different degree. The result of interaction between anions of organic dyes and polymers is formation of specifical hydrophobic-hydrated adducts. Express spectrophotometrical methods of polymer content determination in water solutions with the help of polymer adducts have been elaborated. [Pg.110]

Whereas cellulose films are biodegradable, that is they are readily attacked by bacteria, films and packaging from synthetic polymers are normally attacked at a very low rate. This has led to methods of degrading polymers to a sufficiently low molecular mass (typically about 10000) which are then accessible to biodegradation. [Pg.881]

There are two great families of synthetic polymers, those made by addition methods (notably, polyethylene and other polyolefines), in which successive monomers simply become attached to a long chain, and those made by condensation reactions (polyesters, polyamides, etc.) in which a monomer becomes attached to the end of a chain with the generation of a small by-product molecule, such as water. The first sustained programme of research directed specifically to finding new synthetic macromolecules involved mostly condensation reactions and was master-... [Pg.38]

The comparison among these techniques is tabulated in Table 22.1. In summary, HdC is a separation technique with low selectivity however, the efficiency can be very high. Especially in PCHdC, high analysis speed can be achieved over a wide MW range. ThFFF performs best for the separation of high MW samples. SEC has an intermediate selectivity between FldC and ThFFF. Practicality makes SEC the most suitable method for the common MW range of synthetic polymers. SEC is by far the most commonly used technique for molecular weight distribution determinations. However, HdC is better for the fast analysis purpose. [Pg.608]

Synthetic polymers are classified by their method of synthesis as either chain-growth or step-growth. The categories ate somewhat imprecise but nevertheless provide a useful distinction. Chain-growth polymers are produced by chain-reaction polymerization in which an initiator adds to a carbon-carbon double bond of an unsaturated substrate (a vinyl monomer) to yield a reactive inter-... [Pg.1207]

Two relatively new techniques, matrix assisted laser desorption ionization-lime of flight mass spectrometry (MALDI-TOF) and electrospray ionization (FS1), offer new possibilities for analysis of polymers with molecular weights in the tens of thousands. PS molecular weights as high as 1.5 million have been determined by MALDI-TOF. Recent reviews on the application of these techniques to synthetic polymers include those by Ilantoif54 and Nielen.555 The methods have been much used to provide evidence for initiation and termination mechanisms in various forms of living and controlled radical polymerization.550 Some examples of the application of MALDI-TOF and ESI in end group determination are provided in Table 3.12. The table is not intended to be a comprehensive survey. [Pg.143]

The application of NMR spectroscopy to tacticity determination of synthetic polymers was pioneered by Bovey and Tiers.9 NMR spectroscopy is the most used method and often the only technique available for directly assessing tacticity of polymer chains. "2 7 8 0JI The chemical shift of a given nucleus in or attached to the chain may be sensitive to the configuration of centers three or more monomer units removed. Other forms of spectroscopy (e.g. TR spectroscopy l2 lJ) are useful with some polymers and various physical properties (e.g. the Kerr effect14) may also be correlated with tacticity. [Pg.173]

Nowadays, a strategic area of research is the development of polymers based on carbohydrates due to the worldwide focus on sustainable materials. Since the necessary multi-step synthesis of carbohydrate-based polymers is not economical for the production of commodity plastics, functionalization of synthetic polymers by carbohydrates has become a current subject of research. This aims to prepare new bioactive and biocompatible polymers capable of exerting a temporary therapeutic function. The large variety of methods of anchoring carbohydrates onto polymers as well as the current and potential applications of the functionalized polymers has been discussed recently in a critical review [171]. Of importance is that such modification renders not only functionality but also biodegradability to the synthetic polymers. [Pg.23]

The application areas for LC-MS, as will be illustrated later, are diverse, encompassing both qualitative and quantitative determinations of both high-and low-molecular-weight materials, including synthetic polymers, biopolymers, environmental pollutants, pharmaceutical compounds (drugs and their metabolites) and natural products. In essence, it is used for any compounds which are found in complex matrices for which HPLC is the separation method of choice and where the mass spectrometer provides the necessary selectivity and sensitivity to provide quantitative information and/or it provides structural information that cannot be obtained by using other detectors. [Pg.187]

For the extraction of rubber and rubber compounds a wide variety of solvents (ethyl acetate, acetone, toluene, chloroform, carbon tetrachloride, hexane) have been used [149]. Soxtec extraction has also been used for HDPE/(Tinuvin 770, Chimassorb 944) [114] and has been compared to ultrasonic extraction, room temperature diffusion, dissolution/precipitation and reflux extraction. The relatively poor performance of the Soxtec extraction (50% after 4h in DCM) as compared with the reflux extraction (95% after 2-4 h in toluene at 60 °C) was described to the large difference in temperature between the boiling solvents. Soxtec was also used to extract oil finish from synthetic polymer yam (calibration set range of 0.18-0.33 %, standard error 0.015 %) as reference data for NIRS method development [150]. [Pg.72]


See other pages where Synthetic polymers methods is mentioned: [Pg.252]    [Pg.252]    [Pg.537]    [Pg.68]    [Pg.446]    [Pg.475]    [Pg.480]    [Pg.351]    [Pg.108]    [Pg.257]    [Pg.154]    [Pg.308]    [Pg.330]    [Pg.355]    [Pg.415]    [Pg.490]    [Pg.577]    [Pg.788]    [Pg.219]    [Pg.297]    [Pg.852]    [Pg.142]    [Pg.157]    [Pg.509]    [Pg.433]    [Pg.8]    [Pg.226]    [Pg.225]    [Pg.230]    [Pg.160]    [Pg.172]    [Pg.316]    [Pg.321]    [Pg.327]    [Pg.213]   


SEARCH



Polymer Synthetic polymers

Polymer method

Synthetic polymers

© 2024 chempedia.info