Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

SYNTHETIC NITROGEN PRODUCTS oxide

Since no economical nitrogen fixation process that starts with nitrogen oxides has been discovered, ammonia has developed into the most important building block for synthetic nitrogen products worldwide. Prior to World War II, ammonia production capacity remained relatively stable. But during the war the need for explosives caused an increase in the production of ammonia for nitric acid manufacture. Then, after the war, the ammonia plants were used to manufacture fertilizers. As a result, there was a rapid increase in fertilizer consumption. The advantages of fertilizers were emphasized, and production capacity increased by leaps and bounds. [Pg.25]

Because no economical nitrogen fixation process that starts with nitrogen oxides has been discovered, ammonia has developed into the most important building block for synthetic nitrogen products. Anhydrous ammonia is produced in about 80 countries.36... [Pg.1002]

Arylcyclopropanes and their heterocyclic analogues are liable to electron transfer induced fragmentation of a carbon-carbon bond that in some cases leads to synthetically useful products. Thus, 1,2-diarylcyclopropanes [240-243] as well as 2,3-diaryloxirans [244-246] and -aziridines (in the last case, also 2-monophenyl derivatives) [247,248] are cleaved upon photoinduced electron transfer sensitization. The final result, after back electron transfer, is trans-cis isomerization of the ring. In the presence of a suitable trap, however, a cycloaddition reaction takes place, involving either the radical cation or the ylide. Thus, dioxoles, ozonides or azodioxoles, respectively, are formed in the presence of oxygen and oxazolidines have been obtained from cyclopropanes in the presence of nitrogen oxide (Sch. 23). [Pg.475]

Ammonia is used in the fibers and plastic industry as the source of nitrogen for the production of caprolactam, the monomer for nylon 6. Oxidation of propylene with ammonia gives acrylonitrile (qv), used for the manufacture of acryHc fibers, resins, and elastomers. Hexamethylenetetramine (HMTA), produced from ammonia and formaldehyde, is used in the manufacture of phenoHc thermosetting resins (see Phenolic resins). Toluene 2,4-cHisocyanate (TDI), employed in the production of polyurethane foam, indirectly consumes ammonia because nitric acid is a raw material in the TDI manufacturing process (see Amines Isocyanates). Urea, which is produced from ammonia, is used in the manufacture of urea—formaldehyde synthetic resins (see Amino resins). Melamine is produced by polymerization of dicyanodiamine and high pressure, high temperature pyrolysis of urea, both in the presence of ammonia (see Cyanamides). [Pg.358]

Oxidative reactions frequently represent a convenient preparative route to synthetic intermediates and end products This chapter includes oxidations of alkanes and cycloalkanes, alkenes and cycloalkenes, dienes, aromatic fluorocarbons, alcohols, phenols, ethers, aldehydes and ketones, carboxylic acids, nitrogen compounds, and organophosphorus, -sulfur, -selenium, -iodine, and -boron compounds... [Pg.321]

Azidofurans lose nitrogen giving products reminiscent of those formed from furyl carbenes and biradicals.278 External nitrenes apparently add to furan double bonds just as carbenes do, and again the initial products collapse very readily to give nonheterocyclic products. The nitrene produced oxidation of N-aminophthalimide reacts as in Scheme 54. The products are relatively stable derivatives of but-2-endial and are therefore of potential synthetic value, initially the butene link is Z but easily isomerizes to E on silica columns.279... [Pg.225]

Nitrogen dioxide (NO ) reacts with a wide variety of functional groups and it is the reagent of choice for a number of synthetic transformations. For example, the selective oxidation of sulfide to sulfoxide by NO forms the basis for the commercial production of dimethyl sulfoxide (from dimethyl sulfide) via a catalytic procedure (see below).250 Some representative examples of oxidative transformations carried out with NO are presented in Chart 8. [Pg.292]

The massive contamination of NDE1A in alkaline synthetic fluids (3%) found by Fan et al Q) cannot be explained by known nitrosation kinetics of di- or triethanolamine. Instead, more powerful nitrosation routes, possibly involving nitrogen oxide (N0X) derivatives (e.g., N02> N O t) may be responsible for the amounts of NDE1A in these products (34). In fact, a nitrite-free commercial concentrate was shown to accumulate NDE1A up to about 10 0 days at which time the levels dropped dramatically (19). Inhibition of N0X contaminants may be an effective route to the inhibition of nitrosamine formation in metalworking fluids. [Pg.163]

The electrolysis of asymmetric ketones 43 led to the formation of isomers and stereoisomers. Kinetic measurements for the formation of ketimine 43 in saturated ammoniacal methanol indicated that at least 12 h of the reaction time were required to reach the equilibrium in which approximately 40% of 42 was converted into the ketimine 43. However, the electrolysis was completed within 2.5 h and the products 44 were isolated in 50-76% yields. It seems that the sluggish equilibrium gives a significant concentration of ketimine 43 which is oxidized by the 1 generated at the anode, and the equilibrium is shifted towards formation of the product 44. 2,5-Dihydro-IH-imidazols of type 44, which were unsubstituted on nitrogen, are rare compounds. They can be hydrolyzed with hydrochloric acid to afford the corresponding a-amino ketones as versatile synthetic intermediates for a wide variety of heterocyclic compounds, that are otherwise difficult to prepare. [Pg.112]

Photolytic. Major products reported from the photooxidation of 2,3-dimethylbutane with nitrogen oxides are carbon monoxide and acetone. Minor products included formaldehyde, acetaldehyde and peroxyacyl nitrates (Altshuller, 1983). Synthetic air containing gaseous nitrous acid and exposed to artificial sunlight (A. = 300-450 nm) photooxidized 2,3-dimethylbutane into acetone, hexyl nitrate, peroxyacetal nitrate, and a nitro aromatic compound tentatively identified as a propyl nitrate (Cox et al., 1980). [Pg.473]

Synthetic routes to the nitrogen analogues of thiophene-1-oxides and thiophene-1,1-dioxides have been developed. Treatment of thiophene-1-oxide 48 with TsN=IPh gave sulfoximide 49 <99TL3785>, while a similar reaction involving thiophene 50 provided a mixture of thiophene-1-imine 51 and thiophene-1,1-diimine 52 amongst several products <99TL5549>. [Pg.96]

The spontaneous reaction of nitric oxide with thiols is slow at physiological pH and the final product under anaerobic conditions is not a nitrosothiol (Pryor et al., 1982). The reaction is slow because it involves the conjugate base of the thiol (R—S"). At pH 7.0, the oxidation of cysteine by nitric oxide required 6 hr to reach completion and yields RSSR and N 2O as the products. The synthetic preparation of nitrosothiols usually involves the addition of nitrosonium ion from acidified nitrite to the thiol, or oxidation of the thiol with nitrogen dioxide under anaerobic conditions in organic solvents. Nitric oxide will form nitrosothiols by reaction with ferric heme groups, such as found in metmyoglobin or methemoglobin (Wade and Castro, 1990). It is also possible that nitrosyldioxyl radical also reacts with thiols to form a nitrosothiol. [Pg.32]


See other pages where SYNTHETIC NITROGEN PRODUCTS oxide is mentioned: [Pg.137]    [Pg.299]    [Pg.246]    [Pg.103]    [Pg.2805]    [Pg.252]    [Pg.41]    [Pg.103]    [Pg.229]    [Pg.308]    [Pg.956]    [Pg.238]    [Pg.29]    [Pg.158]    [Pg.539]    [Pg.264]    [Pg.488]    [Pg.165]    [Pg.554]    [Pg.53]    [Pg.216]    [Pg.52]    [Pg.108]    [Pg.599]    [Pg.131]    [Pg.4]    [Pg.61]    [Pg.37]    [Pg.78]    [Pg.41]    [Pg.190]    [Pg.830]    [Pg.45]    [Pg.41]    [Pg.1450]    [Pg.403]   
See also in sourсe #XX -- [ Pg.157 , Pg.171 ]




SEARCH



Nitrogen oxide production

Nitrogen products

Nitrogeneous production

SYNTHETIC NITROGEN PRODUCTS

SYNTHETIC NITROGEN PRODUCTS metal oxide

Synthetic production

© 2024 chempedia.info