Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters synthetic fibers

Polymers are long-chain molecules composed of repeated smaller units called monomers. The term polymer spans an enormous spectrum of substances that find widespread use in virtually all aspects of modern society. Polymers range from high-volume commodity types (polyethylene, polystyrene, etc. ), to synthetic fibers (polyesters, polyamides, etc.), to engineering resins (polycarbonates, polyacetals, etc.), and beyond. [Pg.129]

Figure 14.5 Examples of synthetic fibers polyester, nylon and poly (acrylonitrile). Figure 14.5 Examples of synthetic fibers polyester, nylon and poly (acrylonitrile).
Polyester caps Polyester is a wrinkle-resistant fabric made from a number of synthetic fibers. Polyester caps are comfortable to wear and smooth to the touch. [Pg.171]

Fiber production is a large-volume business around 60 million metric tons per year. About 40% of this is natural fiber cotton and wool the remaining part is man-made , synthetic fiber polyester, polyamide, cellulose, acrylics, and so forth. More than 90% is applied in textiles or carpets. Only about 5% is used in industrial applications. And the new, advanced , high-modulus fibers Technically and commercially very interesting, but we are talking of no more than about 0.2% of the fiber capacity ... [Pg.911]

The physical properties of these fibers are compared with those of natural fibers and other synthetic fibers in Table 1. Additional property data may be found in compilations of the properties of natural and synthetic fibers (1). Apart from the polyolefins, acryhcs and nylon fibers are the lightest weight fibers on the market. Modacryhcs are considerably more dense than acryhcs, with a density about the same as wool and polyester. [Pg.274]

Visual and Manual Tests. Synthetic fibers are generally mixed with other fibers to achieve a balance of properties. Acryhc staple may be blended with wool, cotton, polyester, rayon, and other synthetic fibers. Therefore, as a preliminary step, the yam or fabric must be separated into its constituent fibers. This immediately estabUshes whether the fiber is a continuous filament or staple product. Staple length, brightness, and breaking strength wet and dry are all usehil tests that can be done in a cursory examination. A more critical identification can be made by a set of simple manual procedures based on burning, staining, solubiUty, density deterrnination, and microscopical examination. [Pg.276]

Fig. 17. Distribution of U.S. synthetic fiber consumption A, acryUc I, olefin +, nylon and aramid A, polyester (71,72). Fig. 17. Distribution of U.S. synthetic fiber consumption A, acryUc I, olefin +, nylon and aramid A, polyester (71,72).
However, because of the low melting poiats and poor hydrolytic stabiUty of polyesters from available iatermediates, Carothers shifted his attention to linear ahphatic polyamides and created nylon as the first commercial synthetic fiber. It was nearly 10 years before. R. Whinfield and J. T. Dickson were to discover the merits of poly(ethylene terephthalate) [25038-59-9] (PET) made from aromatic terephthaUc acid [100-21-0] (TA) and ethylene glycol [107-21-1] (2G). [Pg.325]

Thermoplastic Fibers. The thermoplastic fibers, eg, polyester and nylon, are considered less flammable than natural fibers. They possess a relatively low melting point furthermore, the melt drips rather than remaining to propagate the flame when the source of ignition is removed. Most common synthetic fibers have low melting points. Reported values for polyester and nylon are 255—290°C and 210—260°C, respectively. [Pg.490]

Naphthalimides are prepared from naphthaUc anhydride obtained from naphthalene-1,8-dicarboxyhc acid, ie, the oxidation product of acenaphthene or its derivatives, by reaction with amines. They are utilized for synthetic fibers such as polyesters. [Pg.118]

Synthetic Fiber and Plastics Industries. In the synthetic fibers and plastics industries, the substrate itself serves as the solvent, and the whitener is not appHed from solutions as in textiles. Table 6 Hsts the types of FWAs used in the synthetic fibers and plastic industries. In the case of synthetic fibers, such as polyamide and polyester produced by the melt-spinning process, FWAs can be added at the start or during the course of polymerization or polycondensation. However, FWAs can also be powdered onto the polymer chips prior to spinning. The above types of appHcation place severe thermal and chemical demands on FWAs. They must not interfere with the polymerization reaction and must remain stable under spinning conditions. [Pg.119]

Methyl- and dimethylnaphthalenes are contained in coke-oven tar and in certain petroleum fractions in significant amounts. A typical high temperature coke-oven coal tar, for example, contains ca 3 wt % of combined methyl- and dimethylnaphthalenes (6). In the United States, separation of individual isomers is seldom attempted instead a methylnaphtha1 ene-rich fraction is produced for commercial purposes. Such mixtures are used for solvents for pesticides, sulfur, and various aromatic compounds. They also can be used as low freezing, stable heat-transfer fluids. Mixtures that are rich in monomethyinaphthalene content have been used as dye carriers (qv) for color intensification in the dyeing of synthetic fibers, eg, polyester. They also are used as the feedstock to make naphthalene in dealkylation processes. PhthaUc anhydride also can be made from m ethyl n aph th al en e mixtures by an oxidation process that is similar to that used for naphthalene. [Pg.487]

Amino resins react with ceUulosic fibers and change their physical properties. They do not react with synthetic fibers, such as nylon, polyester, or acryhcs, but may self-condense on the surface. This results in a change in the stiffness or resiHency of the fiber. Partially polymerized amino resins of such molecular size that prevents them from penetrating the amorphous portion of ceUulose also tend to increase the stiffness or resiHency of ceUulose fibers. [Pg.328]

The solution (pad bath) contains one or more of the amino resias described above, a catalyst, and other additives such as a softener, a stiffening agent, or a water repeUant. The catalyst may be an ammonium or metal salt, eg, magnesium chloride or ziac nitrate. Synthetic fabrics, such as nylon or polyester, are treated with amino resias to obtaia a stiff finish. Cotton (qv) or rayon fabrics or blends with synthetic fibers are treated with amino resias to obtain shrinkage control and a durable-press finish. [Pg.331]

Sulfur dyes are used mainly for dyeing textile ceUulosic materials or blends of ceUulosic fibers (qv) with synthetic fibers such as acryUc fibers, polyamides (nylons), and polyesters. They are also used for sHk (qv) and paper (qv) in limited quantities for specific appHcations. Solubilized sulfur dyes are used on certain types of leathers (qv). [Pg.162]

Fibers have been used by humans for thousands of years, but only in the twentieth century has there been such an explosion in fiber types available to the textile manufacturer. The advent of synthetic fibers possessing improved resiliency and dimensional stability has placed natural fibers, particularly cotton (qv), at an ostensible disadvantage. Before synthetics, various means to control the shrinkage, dimensional stability, and smooth-dry performance of cotton had been investigated, but the appearance of synthetics such as polyester has placed a greater sense of urgency on cotton interests to focus on the perceived deficiencies of natural fibers. [Pg.442]

There is no question that the bane of textile chemists in the area of cross-linking for smooth-dry performance is the loss of abrasion resistance. This has been a continuing problem when durable press is pushed to high levels of performance. Numerous approaches to this problem have been explored (32). However, the simplest solution has been to blend cotton with synthetic fibers. A 50—50 cotton—polyester fabric can have exceUent smooth-dry performance and yet be able to endure numerous launderings. [Pg.443]


See other pages where Polyesters synthetic fibers is mentioned: [Pg.261]    [Pg.261]    [Pg.84]    [Pg.92]    [Pg.4875]    [Pg.5451]    [Pg.402]    [Pg.1110]    [Pg.302]    [Pg.261]    [Pg.261]    [Pg.84]    [Pg.92]    [Pg.4875]    [Pg.5451]    [Pg.402]    [Pg.1110]    [Pg.302]    [Pg.264]    [Pg.265]    [Pg.268]    [Pg.276]    [Pg.299]    [Pg.403]    [Pg.485]    [Pg.490]    [Pg.491]    [Pg.118]    [Pg.69]    [Pg.22]    [Pg.492]    [Pg.219]    [Pg.219]    [Pg.292]    [Pg.31]    [Pg.140]    [Pg.438]    [Pg.456]    [Pg.82]    [Pg.487]    [Pg.291]    [Pg.447]    [Pg.530]   
See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Polyester fibers

Polyester synthetic chemical fibers

Synthetic fibers

Textiles synthetic fibers: nylon, polyesters

© 2024 chempedia.info