Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsaturated fatty acids synthesis

Mammals can add additional double bonds to unsaturated fatty acids in their diets. Their ability to make arachidonic acid from linoleic acid is one example (Figure 25.15). This fatty acid is the precursor for prostaglandins and other biologically active derivatives such as leukotrienes. Synthesis involves formation of a linoleoyl ester of CoA from dietary linoleic acid, followed by introduction of a double bond at the 6-position. The triply unsaturated product is then elongated (by malonyl-CoA with a decarboxylation step) to yield a 20-carbon fatty acid with double bonds at the 8-, 11-, and 14-positions. A second desaturation reaction at the 5-position followed by an acyl-CoA synthetase reaction (Chapter 24) liberates the product, a 20-carbon fatty acid with double bonds at the 5-, 8-, IT, and ITpositions. [Pg.816]

Epoxide-containing polyesters were enzymatically synthesized via two routes using unsaturated fatty acids as starting substrate (Scheme 11)." Lipase catalysis was used for both polycondensation and epoxidation of unsaturated fatty acid group. One route was synthesis of aliphatic polyesters containing an... [Pg.221]

Unsaturated Fatty Acids. Part I. The Synthesis of Erythrogenic... [Pg.265]

Warwel, S., Sojka, M., and Rusch, M. Synthesis of Dicarboxylic Acids by Transition-Metal Catalyzed Oxidative Cleavage of Terminal-Unsaturated Fatty Acids. 164, 79-98 (1993). Wexle.r, D., Zink, J. I., and Reber, C. Spectroscopic Manifestations of Potential Surface Coupling Along Normal Coordinates in Transition Metal Complexes. 171,173-204 (1994). Willett, P., see Artymiuk, P. J. 174, 73-104 (1995). [Pg.299]

Biosynthesis of Unsaturated Fatty Acids. In the mammalian tissues, the forma-tion of monoene fatty acids is only possible. Oleic acid is derived from stearic acid, and palmitooleic acid, from palmitic acid. This synthesis is carried out in the endoplasmic reticulum of the liver cells via the monooxigenase oxidation chain. Any other unsaturated fatty acids are not produced in the human organism and must be supplied in vegetable food (plants are capable of generating polyene fatty acids). Polyene fatty acids are essential food factors for mammals. [Pg.203]

Warwel, S., Sojka, M., and Rusch, M. Synthesis of Dicarboxylic Acids by Transition-Metal Catalyzed Oxidative Cleavage of Terminal-Unsaturated Fatty Acids. 164, 79-98 (1993). [Pg.163]

FIGURE 3-7 Pathways for the interconversion of brain fatty acids. Palmitic acid (16 0) is the main end product of brain fatty acid synthesis. It may then be elongated, desaturated, and/or P-oxidized to form different long chain fatty acids. The monoenes (18 1 A7, 18 1 A9, 24 1 A15) are the main unsaturated fatty acids formed de novo by A9 desaturation and chain elongation. As shown, the very long chain fatty acids are a-oxidized to form a-hydroxy and odd numbered fatty acids. The polyunsaturated fatty acids are formed mainly from exogenous dietary fatty acids, such as linoleic (18 2, n-6) and a-linoleic (18 2, n-3) acids by chain elongation and desaturation at A5 and A6, as shown. A A4 desaturase has also been proposed, but its existence has been questioned. Instead, it has been shown that unsaturation at the A4 position is effected by retroconversion i.e. A6 unsaturation in the endoplasmic reticulum, followed by one cycle of P-oxidation (-C2) in peroxisomes [11], This is illustrated in the biosynthesis of DHA (22 6, n-3) above. In severe essential fatty acid deficiency, the abnormal polyenes, such as 20 3, n-9 are also synthesized de novo to substitute for the normal polyunsaturated acids. [Pg.42]

It has been found that the catalytic activity of PKC is enhanced by a lipid component of the cell membrane, namely phosphatidylserine. This activity is further stimulated by sn-1,2-diacylglycerol. Oleic acid also activates the enzyme in the presence of 1,2-diacylglycerol, and thus it is presumed to mimic phosphatidylserine. In order to identify that modulating binding site for oleic acid on PKC, a photoaffinity analogue was devised. A carbene generating photophore, diazirine was placed in the apolar terminus of the unsaturated fatty acid ligand (30, Fig. 12). The synthesis and the photochemical activation properties were reported by Ruhmann and Wentrup [113]. [Pg.202]

Polymers Catalytic reactions involving C=C bonds are widely used for the conversion of unsaturated fatty compounds to prepare useful monomers for polymer synthesis. Catalytic C-C coupling reactions of unsaturated fatty compounds have been reviewed by Biermann and Metzger [51]. Metathesis reactions involving unsaturated fatty compounds to prepare co-unsaturated fatty acid esters have been applied by Warwel et al. [52], Ethenolysis of methyl oleate catalyzed by ruthenium carbenes developed by Grubb yields 1-decene and methyl 9-decenoate (Scheme 3.6), which can be very useful to prepare monomers for polyolefins, polyesters, polyethers and polyamide such as Nylon 11. [Pg.64]

Prostaglandins are a subgroup of a larger family of compounds known collectively as eicosanoids, which are synthesized from arachidonic acid (arachidonate) this is a 20-carbon omega-6 unsaturated fatty acid (C20 4). The source of the arachidonic acid for PG synthesis is the cell membrane. Most membrane phospholipids have an unsaturated fatty acid as arachidonate at carbon 2 on the glycerol backbone to help maintain membrane fluidity. The arachidonic acid released from the membrane by the... [Pg.132]

Recently, we reported that the rhodium/BIPHEPHOS-catalyzed hydroformylation of trans-4-octene (Scheme 6) provides an interesting approach for the synthesis of n-nonanal [23]. In this context trans-4-octene can also be seen as a model substance for hydroformylation of internally unsaturated fatty acid esters. This could open up access to the use of renewable resources for the synthesis of valuable n-aldehydes. [Pg.35]

Figure 11.7 Synthesis of triaq/lglyceroL The precursors are glycerol 3-phosphate and long-chain acyl-CoA. R, is a saturated fatty acid, R2 is an unsaturated fatty acid (one or two doubte bonds) and R3 is either saturated or unsaturated. The activity of GPAT-1 regulates triacylglycerol synthesis. In all reactions involving RCO.SCoA, the CoASH is released but is not shown in this diagram. P,- - phosphate. Figure 11.7 Synthesis of triaq/lglyceroL The precursors are glycerol 3-phosphate and long-chain acyl-CoA. R, is a saturated fatty acid, R2 is an unsaturated fatty acid (one or two doubte bonds) and R3 is either saturated or unsaturated. The activity of GPAT-1 regulates triacylglycerol synthesis. In all reactions involving RCO.SCoA, the CoASH is released but is not shown in this diagram. P,- - phosphate.
Sec. 9-2a). The crosslinking process is referred to as drying and is directly dependent on the content of unsaturated fatty acid. The crosslinking reaction involves chemical reactions different from those involved in prepolymer synthesis. [Pg.120]

M. Prakesch, D. Gree, S. Chandrasekhar, R. Gree, Synthesis of fluoro analogues of unsaturated fatty acids and corresponding acyclic metabolites, Eur. J. Org. Chem. (2005) 1221-1232. [Pg.621]

Ester synthesis of fatty acid ethyl ester. The lipase-catalyzed esterification of fatty acid and alcohol is well-known. It was also favorable for the esterification of poly unsaturated fatty acids under mild conditions with the enzyme. However, the activity of native lipase is lower in polar organic solvents, i.e. ethanol and methanol. The synthesis of Ae fatty acid ethyl ester was carried out in ethanol using the palmitic acid-modified lipase. As shown in Figure 7, the reactivity of the modified lipase in this system was much higher than that of the unmoditied lipase. [Pg.179]


See other pages where Unsaturated fatty acids synthesis is mentioned: [Pg.85]    [Pg.59]    [Pg.121]    [Pg.24]    [Pg.176]    [Pg.190]    [Pg.191]    [Pg.169]    [Pg.208]    [Pg.451]    [Pg.62]    [Pg.35]    [Pg.261]    [Pg.210]    [Pg.220]    [Pg.111]    [Pg.211]    [Pg.110]    [Pg.325]    [Pg.297]    [Pg.270]    [Pg.40]    [Pg.157]    [Pg.310]    [Pg.1496]    [Pg.214]   
See also in sourсe #XX -- [ Pg.376 , Pg.377 ]




SEARCH



Acids, unsaturated

Fatty Synthesis

Fatty acids unsaturation

Fatty acids, synthesis

Fatty unsaturated

Synthesis unsaturated

© 2024 chempedia.info