Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthases methionine

Melhyl-HLjfolate is a cofactor of methiojiinc synthase. Methionine synthase cata-lyzes the transfer of the 1-carbon unit from methyl-H folate to homocysteine, generating methionine. Methionine synthase also uses vitamin 5 2 as a cofactor. [Pg.497]

Fig. 3 Structural features of methionine synthase. Methionine synthase is comprised of five domains, which bind homocysteine (HCY), methylfolate (5-methyl THF), cobalamin, and S-adenosylmethionine (SAM). The Cap domain restricts oxidation of cobalamin in its vulnerable Cbl(I) state. Strucmres from E.coli (Bandarian et al., 2002 Dixon et al. 1996) and T.maritima (Evans et al. 2004) (PDB codes 1Q8J, 1K98 and IMSK, respectively) were used to construct this composite model. An uncharacteiized linker segment between the folate and cap domains is absent... Fig. 3 Structural features of methionine synthase. Methionine synthase is comprised of five domains, which bind homocysteine (HCY), methylfolate (5-methyl THF), cobalamin, and S-adenosylmethionine (SAM). The Cap domain restricts oxidation of cobalamin in its vulnerable Cbl(I) state. Strucmres from E.coli (Bandarian et al., 2002 Dixon et al. 1996) and T.maritima (Evans et al. 2004) (PDB codes 1Q8J, 1K98 and IMSK, respectively) were used to construct this composite model. An uncharacteiized linker segment between the folate and cap domains is absent...
Figure 2, Catalysis and reactivation of methionine synthase. Methionine for,motion occurs via two half reactions in which cobalamin serves as the intermediate methyl carrier. Reactivation is depicted in the right-hand portion of the diagram. An electron donor and AdoMet convert the inactive cob(II)alamin form of the enzyme to methylcob(III)alamin. In E. colU flavodoxin serves as the reductant for this priming reaction (7). Figure 2, Catalysis and reactivation of methionine synthase. Methionine for,motion occurs via two half reactions in which cobalamin serves as the intermediate methyl carrier. Reactivation is depicted in the right-hand portion of the diagram. An electron donor and AdoMet convert the inactive cob(II)alamin form of the enzyme to methylcob(III)alamin. In E. colU flavodoxin serves as the reductant for this priming reaction (7).
Homocysteine is markedly elevated in different inborn errors of homocysteine metabolism such as cystathionine p-synthase, methionine synthase deficiencies,... [Pg.255]

Glutamate synthase Methionine sulfone Methionine sulfoximine Homocysteine sulfonamide 15.16 15.16 16... [Pg.94]

Fohc acid is a precursor of several important enzyme cofactors required for the synthesis of nucleic acids (qv) and the metaboHsm of certain amino acids. Fohc acid deficiency results in an inabiUty to produce deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and certain proteins (qv). Megaloblastic anemia is a common symptom of folate deficiency owing to rapid red blood cell turnover and the high metaboHc requirement of hematopoietic tissue. One of the clinical signs of acute folate deficiency includes a red and painhil tongue. Vitamin B 2 folate share a common metaboHc pathway, the methionine synthase reaction. Therefore a differential diagnosis is required to measure foHc acid deficiency because both foHc acid and vitamin B 2 deficiency cause... [Pg.41]

Pyridoxamine phosphate serves as a coenzyme of transaminases, e.g., lysyl oxidase (collagen biosynthesis), serine hydroxymethyl transferase (Cl-metabolism), S-aminolevulinate synthase (porphyrin biosynthesis), glycogen phosphoiylase (mobilization of glycogen), aspartate aminotransferase (transamination), alanine aminotransferase (transamination), kynureninase (biosynthesis of niacin), glutamate decarboxylase (biosynthesis of GABA), tyrosine decarboxylase (biosynthesis of tyramine), serine dehydratase ((3-elimination), cystathionine 3-synthase (metabolism of methionine), and cystathionine y-lyase (y-elimination). [Pg.1290]

N5-Methyltetrahydrofolate homocysteine methyl-transferase (= methionine synthase). This reaction is essential to restore tetrahydrofolate from N5-methyltetrahydrofolate (Fig. 2). [Pg.1291]

Methylmalonyl CoA mutase, leucine aminomutase, and methionine synthase (Figure 45-14) are vitamin Bj2-dependent enzymes. Methylmalonyl CoA is formed as an intermediate in the catabolism of valine and by the carboxylation of propionyl CoA arising in the catabolism of isoleucine, cholesterol, and, rarely, fatty acids with an odd number of carbon atoms—or directly from propionate, a major product of microbial fer-... [Pg.492]

Figure 45-14. Homocysteinuria and the folate trap. Vitamin 6,2 deficiency leads to inhibition of methionine synthase activity causing homocysteinuria and the trapping of folate as methyltetrahydrofolate. Figure 45-14. Homocysteinuria and the folate trap. Vitamin 6,2 deficiency leads to inhibition of methionine synthase activity causing homocysteinuria and the trapping of folate as methyltetrahydrofolate.
When acting as a methyl donor, 5-adenosylmethionine forms homocysteine, which may be remethylated by methyltetrahydrofolate catalyzed by methionine synthase, a vitamin Bj2-dependent enzyme (Figure 45-14). The reduction of methylene-tetrahydrofolate to methyltetrahydrofolate is irreversible, and since the major source of tetrahydrofolate for tissues is methyl-tetrahydrofolate, the role of methionine synthase is vital and provides a link between the functions of folate and vitamin B,2. Impairment of methionine synthase in Bj2 deficiency results in the accumulation of methyl-tetrahydrofolate—the folate trap. There is therefore functional deficiency of folate secondary to the deficiency of vitamin B,2. [Pg.494]

In mammals and in the majority of bacteria, cobalamin regulates DNA synthesis indirectly through its effect on a step in folate metabolism, catalyzing the synthesis of methionine from homocysteine and 5-methyltetrahydrofolate via two methyl transfer reactions. This cytoplasmic reaction is catalyzed by methionine synthase (5-methyltetrahydrofolate-homocysteine methyl-transferase), which requires methyl cobalamin (MeCbl) (253), one of the two known coenzyme forms of the complex, as its cofactor. 5 -Deoxyadenosyl cobalamin (AdoCbl) (254), the other coenzyme form of cobalamin, occurs within mitochondria. This compound is a cofactor for the enzyme methylmalonyl-CoA mutase, which is responsible for the conversion of T-methylmalonyl CoA to succinyl CoA. This reaction is involved in the metabolism of odd chain fatty acids via propionic acid, as well as amino acids isoleucine, methionine, threonine, and valine. [Pg.100]

In contrast with the role of cofactor B12 in methionine synthase (methyl group transfer to a thiol), functional Bi2 model complexes have provided a formidable challenge. Several oxime alkyl-cobalt (structural) B12 models when reacted with arene- and alkanethiolates lead only to... [Pg.105]

Riordan and co-workers have examined zinc complexes of pyrazolyl-bis[(methylthio)methyl]-borate ligands as models for methionine synthase.547, 69 The ligand coordinates in a face-capping fashion with the desired NS2 donor set. [Pg.1225]

Fig. 14.10 Folate metabolism and role of MTHFR. Genetically reduced MTHFR activity affects the distribution between folate species required for protein and DNA synthesis. Higher availabil ity of 5,10-methylenetetrahydrofolate (CH2THF) potentiates the TS inhibition by 5-FdUMP, the active metabolite of 5-FU. Hey, homocysteine Met, methionine CH3HF, 5-methyltetrahydrofolate TS, thymidylate synthase 5-FdUMP, fluorodeoxyuridine monophosphate. Fig. 14.10 Folate metabolism and role of MTHFR. Genetically reduced MTHFR activity affects the distribution between folate species required for protein and DNA synthesis. Higher availabil ity of 5,10-methylenetetrahydrofolate (CH2THF) potentiates the TS inhibition by 5-FdUMP, the active metabolite of 5-FU. Hey, homocysteine Met, methionine CH3HF, 5-methyltetrahydrofolate TS, thymidylate synthase 5-FdUMP, fluorodeoxyuridine monophosphate.
Flavin Mononucleotide (FMN) Methionine synthase reductase, Chorismate synthase... [Pg.332]

Zinc is the active metal in the largest group of metalloproteins found in the nature. Recently a new class of zinc enzymes with a sulfur-rich environment has emerged the thiolate-alkylating enzimes, the most prominent of which is the cobalamine-independent methionine synthase.126 For these reasons several monothiolate zinc complexes have been prepared for the modelling of these enzymes with different N2S as (13),127 130 N20,13° 132 N3,132,133 S3,134 tripod ligands, or with Cd because of the favourable spectroscopic properties with an S3 tripod ligand.135... [Pg.40]

Methionine synthase deficiency (cobalamin-E disease) produces homocystinuria without methylmalonic aciduria 677 Cobalamin-c disease remethylation of homocysteine to methionine also requires an activated form of vitamin B12 677 Hereditary folate malabsorption presents with megaloblastic anemia, seizures and neurological deterioration 678... [Pg.667]

Homocystinuria Usually a failure of cystathionine synthase (Fig. 40-2 reaction 6). Rarely associated with aberrant vitamin B12 metabolism (Fig. 40-2) Thromboembolic diathesis, marfanoid habitus, ectopia lentis. Mental retardation is frequent. Diet low in methionine Vitamin B6 in pyridoxine-responsive syndromes Vitamin B12 in responsive syndromes Anticlotting agents... [Pg.668]

Homocystinuria can be treated in some cases by the administration of pyridoxine (vitamin Bs), which is a cofactor for the cystathionine synthase reaction. Some patients respond to the administration of pharmacological doses of pyridoxine (25-100 mg daily) with a reduction of plasma homocysteine and methionine. Pyridoxine responsiveness appears to be hereditary, with sibs tending to show a concordant pattern and a milder clinical syndrome. Pyridoxine sensitivity can be documented by enzyme assay in skin fibroblasts. The precise biochemical mechanism of the pyridoxine effect is not well understood but it may not reflect a mutation resulting in diminished affinity of the enzyme for cofactor, because even high concentrations of pyridoxal phosphate do not restore mutant enzyme activity to a control level. [Pg.676]


See other pages where Synthases methionine is mentioned: [Pg.124]    [Pg.132]    [Pg.132]    [Pg.5148]    [Pg.740]    [Pg.770]    [Pg.124]    [Pg.132]    [Pg.132]    [Pg.5148]    [Pg.740]    [Pg.770]    [Pg.45]    [Pg.43]    [Pg.425]    [Pg.177]    [Pg.483]    [Pg.102]    [Pg.102]    [Pg.103]    [Pg.1194]    [Pg.1195]    [Pg.249]    [Pg.129]    [Pg.336]    [Pg.337]    [Pg.92]    [Pg.108]    [Pg.237]    [Pg.238]    [Pg.673]    [Pg.35]    [Pg.676]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



Cobalamin-independent methionine synthase

Folic acid methionine synthase

Homocysteine metabolism methionine synthase

Kinetics, methionine synthase

Methionine metabolism cystathionine synthase

Methionine synthase

Methionine synthase

Methionine synthase 5-methyltetrahydrofolate

Methionine synthase alamin form

Methionine synthase catalysis

Methionine synthase cobalamins

Methionine synthase crystal structure

Methionine synthase deficiency

Methionine synthase folic acid metabolism

Methionine synthase localization

Methionine synthase mechanism

Methionine synthase methylcobalamin structure

Methionine synthase reaction pathways

Methionine synthase reductase

Methionine threonine synthase

Subject methionine synthase

© 2024 chempedia.info