Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surfactants and Colloids in Supercritical Fluids

Surfactants and Colloids in Supercritical Fluids Because very few nonvolatile molecules are soluble in CO2, many types of hydrophilic or lipophilic species may be dispersed in the form of polymer latexes (e.g., polystyrene), microemulsions, macroemulsions, and inorganic suspensions of metals and metal oxides (Shah et al., op. cit.). The environmentally benign, nontoxic, and nonflammable fluids water and CO2 are the two most abundant and inexpensive solvents on earth. Fluorocarbon and hydrocarbon-based surfactants have been used to form reverse micelles, water-in-C02... [Pg.15]

The unique density dependence of fluid properties makes supercritical fluids attractive as solvents for colloids including microemulsions, emulsions, and latexes, as discussed in recent reviews[l-4]. The first generation of research involving colloids in supercritical fluids addressed water-in-alkane microemulsions, for fluids such as ethane and propane[2, 5]. The effect of pressure on the droplet size, interdroplet interactions[2] and partitioning of the surfactant between phases was determined experimentally[5] and with a lattice fluid self-consistent field theory[6]. The theory was also used to understand how grafted chains provide steric stabilization of emulsions and latexes. [Pg.211]

In this paper we review principles relevant to colloids in supercritical fluids colloids in liquids are discussed elsewhere [24]. Thermodynamically unstable emulsions and latexes in CO2 require some form of stabilization to maintain particle dispersion and prevent flocculation. Flocculation may be caused by interparticle van der Waals dispersion forces (Hamaker forces). In many of the applications mentioned above, flocculation of the dispersed phase is prevented via steric stabilization with surfactants, in many cases polymeric surfactants. When stabilized particles collide, polymers attached to the surface impart a repulsive force, due to the entropy lost when the polymer tails overlap. The solvent in the interface between the particles also affects the sign and range of the interaction force, and the effect of solvent is particularly important for highly compressible supercritical solvents. Since the dielectric constant of supercritical CO2 and alkanes is low, electrostatic stabilization is not feasible [24] and is not discussed here. For lyophobic emulsion and latex particles (-1 xm), the repulsive... [Pg.211]

Chapter 8 briefly introduced the concept of supercritical fluids in the context of undersea thermal vents. The supercritical point for water occurs at a temperature of 705°F (374°C) and a pressure of 222.3 bar (atmosphere). Above this temperature, no pressure can condense water to its liquid state. For carbon dioxide (CO2), the critical temperature (88.0°F or 31.1°C) and critical pressure (73.8 bar) are much lower. Above the supercritical point, CO2 behaves as a liquidlike gas liquidlike densities, gaslike viscosities. The solubility properties of supercritical CO2 are mnable by varying temperature and/or pressure. Density and dielectric constant increase with increasing pressure and decreasing temperature. Water and ionic substances are insoluble in supercritical CO2. The ability of supercritical CO2 to dissolve and extract relatively non-polar substances has been known for decades. The range may be extended by adding polar solvents such as methanol or acetone. The addition of surfactants helps to disperse microscopic particles to form colloidal suspensions. Carbon dioxide is nonflammable, nontoxic, and inexpensive. [Pg.399]

Consider the complexity involved in modeling steric stabilization with a diblock copolymer. The reservoir bulk solution of copolymer is usually dilute (<1 wt % polymer) and the copolymer and solvent equilibrate between the bulk and surface regions. However, as solvent quality is decreased to the LCST phase boundary, the bulk solution will also separate into polymer-rich and polymer-lean phases. In addition, many diblock copolymers form self-assembled aggregates such as micelles and lamellae, if the concentration is above the critical micelle concentration. Thus, stabilizer can partition among up to four phases as solvent quality or polymer concentration is changed. The unique density dependence of supercritical fluids adds another dimension to the complex phase behavior possible. In the theoretical studies discussed below, surfactant adsorption energy, solubility, and concentration are chosen carefully to avoid micelle formation or bulk phase separation, in order to focus primarily on adsorption and colloid stability. [Pg.217]


See other pages where Surfactants and Colloids in Supercritical Fluids is mentioned: [Pg.2157]    [Pg.2141]    [Pg.127]    [Pg.2157]    [Pg.2141]    [Pg.127]    [Pg.211]    [Pg.119]    [Pg.134]    [Pg.221]    [Pg.563]    [Pg.298]   


SEARCH



Colloidal fluids

Colloidal surfactants

In supercritical

In supercritical fluids

Supercritical surfactant

© 2024 chempedia.info