Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface-type Resonators

1 Surface-type Resonators. - This type of resonator is of use in in vivo EPR imaging or spectroscopy studies in which a particular part of the animal under study is primarily of interest - for example the skin, or an implanted tumour near the surface. In these cases a surface resonator will give better sensitivity than a whole-body resonator designed to accommodate a whole animal. [Pg.149]

The simplest form of surface resonator is formed by a single turn of wire. Tada et al. described a resonator of this sort in which a single-turn loop was formed at the end of a transmission line comprising two parallel lengths of 50 2 coaxial [Pg.149]


Fig. 4.1.17 Graphic illustration of Forster-type resonance energy transfer from aequorin to Aequorea GFP. In the vessel at left, a solution contains the molecules of aequorin and GFP randomly distributed in a low ionic strength buffer. The vessel at right contains a solution identical with the left, except that it contains some particles of DEAE cellulose. In the solution at right, the molecules of aequorin and GFP are coadsorbed on the surface of DEAE particles. Upon an addition of Ca2+, the solution at left emits blue light from aequorin (Xmax 465 nm), and the solution at right emits green light from GFP (Xmax 509 nm). Fig. 4.1.17 Graphic illustration of Forster-type resonance energy transfer from aequorin to Aequorea GFP. In the vessel at left, a solution contains the molecules of aequorin and GFP randomly distributed in a low ionic strength buffer. The vessel at right contains a solution identical with the left, except that it contains some particles of DEAE cellulose. In the solution at right, the molecules of aequorin and GFP are coadsorbed on the surface of DEAE particles. Upon an addition of Ca2+, the solution at left emits blue light from aequorin (Xmax 465 nm), and the solution at right emits green light from GFP (Xmax 509 nm).
In this Section we want to present one of the fingerprints of noble-metal cluster formation, that is the development of a well-defined absorption band in the visible or near UV spectrum which is called the surface plasma resonance (SPR) absorption. SPR is typical of s-type metals like noble and alkali metals and it is due to a collective excitation of the delocalized conduction electrons confined within the cluster volume [15]. The theory developed by G. Mie in 1908 [22], for spherical non-interacting nanoparticles of radius R embedded in a non-absorbing medium with dielectric constant s i (i.e. with a refractive index n = Sm ) gives the extinction cross-section a(o),R) in the dipolar approximation as ... [Pg.275]

The presence of metallic surfaces or particles in the vicinity of a fluorophore can dramatically alter the fluorescence emission and absorption properties of the fluorophore. The effect, which is associated with the surface plasmon resonance of the metallic surface, depends on parameters such as metal type, particle size, fluorophore type and fluorophore-particle separation. [Pg.209]

The dynamics of intercalation of small molecules with DNA, groove binding and binding to specific sites, such as base pair mismatches have been studied by stopped-flow,23,80 108 temperature jump experiments,26,27,94 109 120 surface plasmon resonance,121 129 NMR,86,130 135 flash photolysis,136 138 and fluorescence correlation spectroscopy.64 The application of the various techniques to study the binding dynamics of small molecules will be analyzed for specific examples of each type of binding. [Pg.186]

Immunosensors have been developed commercially mostly for medical purposes but would appear to have considerable potential for food analysis. The Pharmacia company has developed an optical biosensor, which is a fully automated continuous-flow system which exploits the phenomenon of surface plasmon resonance (SPR) to detect and measure biomolecular interactions. The technique has been validated for determination of folic acid and biotin in fortified foods (Indyk, 2000 Bostrom and Lindeberg, 2000), and more recently for vitamin Bi2. This type of technique has great potential for application to a wide range of food additives but its advance will be linked to the availability of specific antibodies or other receptors for the various additives. It should be possible to analyse a whole range of additives by multi-channel continuous flow systems with further miniaturisation. [Pg.129]

Kim et al. used the exchange reaction to synthesize cross-linked AuNP-PNIPAM core-shell hybrid structures, as well as a brush-type AuNP/PNIPAM hybrid through surface-initiated ATRP in an aqueous medium. The disulfide initiators, [BrC (CH3)2COO(CH2)iiS]2, were bound to AuNPs synthesized by citrate reduction. They have studied the effect of cross-linking on the thermo-responsiveness of the AuN / PNIPAM hybrids for potential use as a stimuli responsive optical device, such as surface plasmon resonance-based sensing materials [91]. [Pg.150]

Very few immunosensors are commercially available. The commercial immunosensors are either the detector or bioanalyzer types. The PZ 106 immunosensor from Universal Sensors Inc. (New Orleans, LA) has been used as a detector to measure antibody-antigen reaction. Ohmicron (Newtown, PA) developed a series of pesticide immuno-bioanalyzers that have been used in field tests. Pharmacia Biosensor USA (Piscataway, NJ) recently introduced BIAcore immunodetection system. A combination of a unique flow injection device and surface plasmon resonance (SPR) detection technique provides a real time analysis. A carboxylmethyldextran layer added to plasmon generating gold film is a hydrophobic, activatable, and flexible polymer that provides high antibody and low non-specific bindings. System demonstration at the Institute of Food Technologists (IFT) 1994 meeting in Atlanta drew attention of food scientists. It should easily be adapted for food protein characterization. [Pg.339]

In this section an overview of the numerous methods and principles for the discrimination of enantiomers is given. First, the interaction principles of the polymer-based methods adapted from chromatographic procedures are illustrated. The discrimination of enantiomers was achieved some decades ago by using different types of stationary materials, like cyclodextrins or polymer-bonded amide selectors. These stationary-phase materials have successfully been appointed for label-free optical sensing methods like surface plasmon resonance (SPR) or reflectometric interference spectroscopy (RIfS). Furthermore, various successful applications to optical spectroscopy of the well-established method of fluorescence measurements for the discrimination of enantiomers are described. [Pg.325]


See other pages where Surface-type Resonators is mentioned: [Pg.359]    [Pg.343]    [Pg.21]    [Pg.40]    [Pg.8]    [Pg.99]    [Pg.268]    [Pg.387]    [Pg.167]    [Pg.267]    [Pg.270]    [Pg.465]    [Pg.104]    [Pg.203]    [Pg.217]    [Pg.230]    [Pg.265]    [Pg.410]    [Pg.141]    [Pg.124]    [Pg.100]    [Pg.522]    [Pg.526]    [Pg.23]    [Pg.336]    [Pg.2]    [Pg.180]    [Pg.241]    [Pg.331]    [Pg.11]    [Pg.212]    [Pg.92]    [Pg.492]    [Pg.1726]    [Pg.208]    [Pg.236]    [Pg.86]    [Pg.272]    [Pg.39]    [Pg.283]   


SEARCH



Surface plasmon resonance-type biosensor

Surface resonances

Surface types

© 2024 chempedia.info