Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wilhelmy plate technique, surface tension

Each term on the right hand-side of Eq. (2.9) is measured independently providing a direct determination of n, also under low pressures [30]. It is necessary as well to eliminate the fluctuations in the atmospheric pressure and to measure more precisely the differential pressure pg - p, (Fig. 2.12). This is done with a sensitive draft-range differential pressure transducer from Omega (Model PX750-06DI) with an accuracy of 0.5 Pa. The capillary radius r is determined by a Kondon micrometer calliper while the surface tension of the surfactant solution - by the Wilhelmy-plate technique, and the height hc in the capillary tube - with a Wild cathetometer (Model KM-274). [Pg.60]

These equations may be compared with those for cylinders, see for instance [1.3.21. For flat plates one does not have to worry about complications of the details of the profile, but this advantage is offset by the much lower rise. Typically, h is of order i.e. h = O (mm) and y is proportional to whereas it scales with ah in capillaries. Over the last few decades laser-optical techniques for scanning the meniscus and establishing h down to about 10" mm have become available In a modem variant of the Wilhelmy plate technique, to be described in sec. 1.8a, the force needed to pull the plate out of the liquid is measured as a function of the height above the zero level. In this way the surface tension and contact angle can be determined simultaneously. Alternatively, the method can be used to obtain contact angles, i.e. from [1.3.161 after y has been measured by some other technique. [Pg.58]

The Wilhelmy plate technique has also been modified to measure surface or interfacial tensions under special conditions. By way of illustration we mention the application to the measurement of electrocapillanj curves for the mercuiy-aqueous electrolyte solution interface by Montgomery and Anson ), extending earlier work by Smith ). Electrocapillary curves are plots of y as a function of the potential applied across the interface, which should be polarizable. In fig. II.3.48 we already gave a few such curves. Montgomery and Anson found that their curve in 10 2 M NaF agreed within 0.005 mN m- with data obtained using the maximum bubble pressure. [Pg.80]

The force at the barrier may be measured directly by a calibrated torsion wire that is mechanically attached to the barrier. However, nowadays the surface tensions at both sides of the barrier are measured Independently using one of the appropriate methods in sec. 1.8, mostly by the static Wilhelmy plate technique. The latter method has the advantage that einy leakage of monolayer material across the barrier can be easUy detected. [Pg.220]

Steady State Expansion Measurements. The dynamic surface tension in steady state expansion was determined using a modified Langmuir trough equipped with six barriers fixed to an endless belt which were moved caterpillar-wise one after another over the liquid surface.10,24 Surface tension was determined using the Wilhelmy plate technique. Measurements were performed going from the highest to the lowest expansion rate. [Pg.244]

In 2008, Qian et al. synthesized two series of four-arm and eleven-arm star polystyrene with six different molar masses for each case. They determined surface tension of single component polymer film using a Wilhelmy plate technique... [Pg.112]

The Wilhelmy plate technique was used. The decrease of the surface tension with time due to the adsorption of protein molecules at the air/protein solution interface was recorded. The values after 40 minutes were taken. To set up a new pH we used an automatic micropump which introduced 10 M NaOH to the measuring cell equipped with a magnetic stirrer. The same surface tension values for each pH were obtained with albumin initially dissolved in 10 NaOH and... [Pg.275]

The Wilhelmy Method This is a technique that can be used for both surface/interfacial tension and contact angle measurements (Fig. 7b). To measure the surface tension, a plate with known perimeter P is attached to a balance. [Pg.1953]

The most common methods used to measure surface tension of surfactant solutions using commercial instruments are the du Noiiy ring and Wilhelmy plate techniques (Fig. 4.7c and d). In the former, the force necessary to detach a ring or wire loop from a liquid surface is measured (for example using... [Pg.170]

Dynamic surface tension has also been measured by quasielastic light scattering (QELS) from interfacial capillary waves [30]. It was shown that QELS gives the same result for the surface tension as the traditional Wilhelmy plate method down to the molecular area of 70 A. QELS has recently utilized in the study of adsorption dynamics of phospholipids on water-1,2-DCE, water-nitrobenzene and water-tetrachloromethane interfaces [31]. This technique is still in its infancy in liquid-liquid systems and its true power is to be shown in the near future. [Pg.539]

The Wilhelmy hanging plate method (13) has been used for many years to measure interfacial and surface tensions, but with the advent of computer data collection and computer control of dynamic test conditions, its utility has been greatly increased. The dynamic version of the Wilhelmy plate device, in which the liquid phases are in motion relative to a solid phase, has been used in several surface chemistry studies not directly related to the oil industry (14- 16). Fleureau and Dupeyrat (17) have used this technique to study the effects of an electric field on the formation of surfactants at oil/water/rock interfaces. The work presented here is concerned with reservoir wettability. [Pg.560]

Surface tension measurements. Solutions of the betaines were prepared with quartz-condensed, distilled water, specific conductance, 1.1 X 10" mho cm" at 25°C. All surface tension measurements were made by Wilhelmy vertical plate technique. Solutions to be tested were immersed in a constant-temperature bath at the desired temperature 0.02°C and aged for at least 0.5 h before measurements were made. The pH of all solutions was > 5.0 (usually, in the range 5.5-5.9), where surface properties show no change with pH. [Pg.52]

The situation shown in Figure 6.2b is one in which surface tension and contact angle considerations pull a liquid upward in opposition to gravity. A mass of liquid is drawn up as if it were suspended by the surface from the supporting walls. At equilibrium the upward pull of the surface and the downward pull of gravity on the elevated mass must balance. This elementary statement of force balance applies to two techniques by which 7 can be measured if 6 is known the Wilhelmy plate and capillary rise. [Pg.253]

Apparatus and Procedure. Surface Isotherms. The technique for determining the n-A and AV-A curves of the lipid films has been described (6). Briefly, the Wilhelmy plate method was used to measure surface tension, from which the surface pressure was calculated (n = 7h2o—yfiim) The surface potential was measured by means of a radioactive (226Ra) air electrode and a saturated calomel electrode connected to a high impedance model 610 B Keithley electrometer (Keithley Instruments, Cleveland, Ohio). [Pg.165]

This unit will introduce two fundamental protocols—the Wilhelmy plate method (see Basic Protocol 1 and Alternate Protocol 1) and the du Noiiy ring method (see Alternate Protocol 2)—that can be used to determine static interfacial tension (Dukhin et al., 1995). Since the two methods use the same experimental setup, they will be discussed together. Two advanced protocols that have the capability to determine dynamic interfacial tension—the drop volume technique (see Basic Protocol 2) and the drop shape method (see Alternate Protocol 3)—will also be presented. The basic principles of each of these techniques will be briefly outlined in the Background Information. Critical Parameters as well as Time Considerations for the different tests will be discussed. References and Internet Resources are listed to provide a more in-depth understanding of each of these techniques and allow the reader to contact commercial vendors to obtain information about costs and availability of surface science instrumentation. [Pg.631]

Provides measuring techniques of contact angle, surface tension, interfacial tension, and bubble pressure. Suitable methods for both static and dynamic inteifacial tension of liquids include du Nous ring, Wilhelmy plate, spinning drop, pendant drop, bubble pressure, and drop volume techniques. Methods for solids include sessile drop, dynamic Wilhelmy, single fiber, and powder contact angle techniques. [Pg.646]

Important techniques to measure the surface tension of liquids are the sessile drop method, the pendant or sessile bubble method, the Du-Notiy ring tensiometer, and the Wilhelmy-plate method. [Pg.24]

Table 1.2. Surface tensions of water in mN m , obtained by various investigations using different techniques. Temperatures in degrees Celsius. Abbreviations for methods CR = capillary rise, WP = Wilhelmy plate, DNR = Du Nouy ring, DM = other detachment method or object in the surface. HD = hanging (pendent) drop, SD = sessile drop, MBP = maximum bubble pressure DW = drop weight. Table 1.2. Surface tensions of water in mN m , obtained by various investigations using different techniques. Temperatures in degrees Celsius. Abbreviations for methods CR = capillary rise, WP = Wilhelmy plate, DNR = Du Nouy ring, DM = other detachment method or object in the surface. HD = hanging (pendent) drop, SD = sessile drop, MBP = maximum bubble pressure DW = drop weight.
Monolayer Techniques. Surface tension and surface potential were measured by a torsion balance with the Wilhelmy plate and a radioactive (226Ra) air electrode (5, 20). [Pg.253]


See other pages where Wilhelmy plate technique, surface tension is mentioned: [Pg.2581]    [Pg.564]    [Pg.573]    [Pg.302]    [Pg.91]    [Pg.395]    [Pg.173]    [Pg.2581]    [Pg.349]    [Pg.269]    [Pg.12]    [Pg.358]    [Pg.341]    [Pg.220]    [Pg.405]    [Pg.125]    [Pg.1445]    [Pg.81]    [Pg.183]    [Pg.465]    [Pg.467]    [Pg.218]    [Pg.14]    [Pg.502]    [Pg.27]    [Pg.391]    [Pg.394]    [Pg.270]    [Pg.248]    [Pg.320]   
See also in sourсe #XX -- [ Pg.253 , Pg.253 , Pg.276 , Pg.302 ]




SEARCH



Surface Wilhelmy plate

Surfaces plates

Surfacing techniques

Wilhelmy

Wilhelmy plate

Wilhelmy plate technique

Wilhelmy plate technique, surface tension measurement

Wilhelmy technique

© 2024 chempedia.info