Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface tension complexes

The surface tension of a pure liquid should and does come out to be the same irrespective of the method used, although difficulties in the mathematical treatment of complex phenomena can lead to apparent discrepancies. In the case of solutions, however, dynamic methods, including detachment ones, often tend... [Pg.35]

Where surface-active agents are present, the notion of surface tension and the description of the phenomena become more complex. As fluid flows past a circulating drop (bubble), fresh surface is created continuously at the nose of the drop. This fresh surface can have a different concentration of agent, hence a different surface tension, from the surface further downstream that was created earlier. Neither of these values need equal the surface tension developed in a static, equiUbrium situation. A proper description of the flow under these circumstances involves additional dimensionless groups related to the concentrations and diffusivities of the surface-active agents. [Pg.92]

Because of the complexity of designs and performance characteristics, it is difficult to select the optimum atomizer for a given appHcation. The best approach is to consult and work with atomizer manufacturers. Their technical staffs are familiar with diverse appHcations and can provide valuable assistance. However, they will usually require the foUowing information properties of the Hquid to be atomized, eg, density, viscosity, and surface tension operating conditions, such as flow rate, pressure, and temperature range required mean droplet size and size distribution desired spray pattern spray angle requirement ambient environment flow field velocity requirements dimensional restrictions flow rate tolerance material to be used for atomizer constmction cost and safety considerations. [Pg.334]

Such nonequilihrium surface tension effects ate best described ia terms of dilatational moduh thanks to developments ia the theory and measurement of surface dilatational behavior. The complex dilatational modulus of a single surface is defined ia the same way as the Gibbs elasticity as ia equation 2 (the factor 2 is halved as only one surface is considered). [Pg.464]

In a fundamental sense, the miscibility, adhesion, interfacial energies, and morphology developed are all thermodynamically interrelated in a complex way to the interaction forces between the polymers. Miscibility of a polymer blend containing two polymers depends on the mutual solubility of the polymeric components. The blend is termed compatible when the solubility parameter of the two components are close to each other and show a single-phase transition temperature. However, most polymer pairs tend to be immiscible due to differences in their viscoelastic properties, surface-tensions, and intermolecular interactions. According to the terminology, the polymer pairs are incompatible and show separate glass transitions. For many purposes, miscibility in polymer blends is neither required nor de-... [Pg.649]

Surfactants are probably the materials which most affect the performance of alkali cleaners. Surfactants are complex chemicals which modify the solubility of various materials in, and their surface affinity for, oil and water. The diverse composite which makes up the surface of a metal object must be fully wetted out if the cleaner is to perform properly. Surfactants lower the surface tension to allow wetting out to occur. Oils and greases must either be dissolved off the surface or lifted from it surfactants assist in both areas. [Pg.284]

Molten salt investigation methods can be divided into two classes thermodynamic and kinetic. In some cases, the analysis of melting diagrams and isotherms of physical-chemical properties such as density, surface tension, viscosity and electroconductivity enables the determination of the ionic composition of the melt. Direct investigation of the complex structure is performed using spectral methods [294]. [Pg.135]

The results were presented in the form of isotherms, in which the properties are plotted versus the concentration. Nevertheless analysis of the isotherms was made based on available melting diagrams approach that the melts consist of TaFg3 and TaF7Cl3 complex ions. However, according to this general conception [312-314], the isotherm of the surface tension must, in such a case, have either a minimum or at least display prominence of the dependence in the direction of the concentration axis. [Pg.151]

Volkov and Sushko [335] described a technique that is based on the use of nets. This method provides direct absorption spectra, but is very complex to perform The net must be placed in a chamber that ensures a pure inert atmosphere so as to avoid hydrolysis of the melt, and the temperature and geometry of the net must be kept very stable. Other major limitations of the method are the requirements that the surface tension of the melt be such that its position on the net is ensured, and that the vapor pressure of the material in molten state be as low as possible... [Pg.169]

It was assumed that the added complexity of two-phase flow in a micro-channel is the result of interactions between liquid inertia, the liquid viscous force, and surface tension. Two key measures of these interactions are the Reynolds and Weber numbers based on liquid properties ... [Pg.296]

The dynamic surface tension of a monolayer may be defined as the response of a film in an initial state of static quasi-equilibrium to a sudden change in surface area. If the area of the film-covered interface is altered at a rapid rate, the monolayer may not readjust to its original conformation quickly enough to maintain the quasi-equilibrium surface pressure. It is for this reason that properly reported II/A isotherms for most monolayers are repeated at several compression/expansion rates. The reasons for this lag in equilibration time are complex combinations of shear and dilational viscosities, elasticity, and isothermal compressibility (Manheimer and Schechter, 1970 Margoni, 1871 Lucassen-Reynders et al., 1974). Furthermore, consideration of dynamic surface tension in insoluble monolayers assumes that the monolayer is indeed insoluble and stable throughout the perturbation if not, a myriad of contributions from monolayer collapse to monomer dissolution may complicate the situation further. Although theoretical models of dynamic surface tension effects have been presented, there have been very few attempts at experimental investigation of these time-dependent phenomena in spread monolayer films. [Pg.60]

The basis for the foam properties is given by interfacial parameters. Although correlations have been shown between a single parameter and foam properties, there is still a lack in a general correlation between interfacial properties and the foam behavior of complex systems in detergency. The simplest approach to correlate interfacial parameters to foam properties is the comparison of the surface activity measured by the surface tension of a surfactant system and foam stability. [Pg.99]


See other pages where Surface tension complexes is mentioned: [Pg.344]    [Pg.344]    [Pg.79]    [Pg.2772]    [Pg.283]    [Pg.44]    [Pg.451]    [Pg.128]    [Pg.307]    [Pg.463]    [Pg.1417]    [Pg.12]    [Pg.520]    [Pg.578]    [Pg.335]    [Pg.18]    [Pg.538]    [Pg.250]    [Pg.15]    [Pg.428]    [Pg.428]    [Pg.431]    [Pg.205]    [Pg.718]    [Pg.1011]    [Pg.125]    [Pg.13]    [Pg.202]    [Pg.12]    [Pg.166]    [Pg.202]    [Pg.51]    [Pg.3]    [Pg.58]    [Pg.309]    [Pg.361]    [Pg.299]    [Pg.576]   
See also in sourсe #XX -- [ Pg.148 , Pg.149 , Pg.150 , Pg.151 ]




SEARCH



Surface complex

Surface complexation

© 2024 chempedia.info