Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface nanosized

ZnO nanoparticles possess greater surface/volume ratio. When used in carboxylated nitrile rubber as curative, ZnO nanoparticles show excellent mechanical and dynamic mechanical properties [41]. The ultimate tensile strength increases from 6.8 MPa in ordinary rabber grade ZnO-carboxylated nitrile rubber system to 14.9 MPa in nanosized ZnO-carboxylated nitrile mbber without sacrificing the elongation at failure values. Table 4.1 compares these mechanical properties of ordinary and nano-ZnO-carboxylated nitrile rubbers, where the latter system is superior due to more rubber-ZnO interaction at the nanolevel. [Pg.94]

The coprecipitation (CP) method was the first method that was found to be effective in depositing nanosized gold particles on base metal oxide surfaces [1, 16]. In this method, an aqueous solution of HAuCLj and the nitrate of a base metal is poured, under vigorous stirring, into an aqueous solution of Na2C03 at 70°C in a short period (within 3 min). The adequate concentration of both the solutions is 0.1-0.4M. The pH of the mixed solution can be maintained at about 9 by using... [Pg.53]

Nanosize particles (e.g., metals, semiconductors, etc.) are of continuing interest because they possess fascinating catalytic, electronic, and optical properties. Larger particles decorated with smaller nanoparticles on their surface are of interest because of their potential use as heterogeneous catalysts and their relevance in electronic and optical sensor applications as well as surface-enhanced Raman scattering [39,72-75]. [Pg.512]

Chapter 1 is a view of the potential of surface forces apparatus (SFA) measurements of two-dimensional organized ensembles at solid-liquid interfaces. At this level, information is acquired that is not available at the scale of single molecules. Chapter 2 describes the measurement of surface interactions that occur between and within nanosized surface structures—interfacial forces responsible for adhesion, friction, and recognition. [Pg.689]

Electron micrographs (scanning and transmission) showed that tungsten carbide is well dispersed on the surface of each support as nanosized particles (20 - 50 nm) as typified by the images in Figs. 3 (a b). However, BET surface area decreased in the order alumina > silica > titania > zirconia. With highest surface area obtained for each support being 240,133,18 and 9 m g respectively. [Pg.784]

The preparation of immobilized CdTe nanoparticles in the 30-60 nm size range on a Te-modified polycrystalline Au surface was reported recently by a method comprising combination of photocathodic stripping and precipitation [100], Visible light irradiation of the Te-modified Au surface generated Te species in situ, followed by interfacial reaction with added Cd " ions in a Na2S04 electrolyte. The resultant CdTe compound deposited as nanosized particles uniformly dispersed on the Au substrate surface. [Pg.178]

As aforementioned, diblock copolymer films have a wide variety of nanosized microphase separation structures such as spheres, cylinders, and lamellae. As described in the above subsection, photofunctional chromophores were able to be doped site-selectively into the nanoscale microdomain structures of the diblock copolymer films, resulting in nanoscale surface morphological change of the doped films. The further modification of the nanostructures is useful for obtaining new functional materials. Hence, in order to create further surface morphological change of the nanoscale microdomain structures, dopant-induced laser ablation is applied to the site-selectively doped diblock polymer films. [Pg.213]

Surface-enhanced Raman scattering (SERS) is a candidates for resolving this issue. Since the SERS effect is observed only at metal surfaces with nanosized curvature, this technique can also be used to investigate nanoscale morphological structures of metal surfaces. It is thus worth investigating SERS under oscillatory electrodeposition conditions. The author of this chapter and coworkers recently reported that... [Pg.252]

In this section, we demonstrate the real ORR activities (apparent rate constant per real active surface area, fe pp) and P(H202) at bulk Pt and nanosized Pt catalysts dispersed on carbon black (Pt/CB) with dp,= 1.6 + 0.4, 2.6 + 0.7, and 4.8 1.0 nm in the practical temperature range 30-110 °C [Yano et al., 2006b]. The use of a channel flow double-electrode (CFDE) cell allowed us to evaluate fe pp and P(H202) precisely. [Pg.331]

Waszczuk et al., 2001b Tong et al., 2002]. Because Ru is deposited as nanosized Ru islands of monoatomic height, the Ru coverage of Pt could be determined accurately. In that case, the best activity with regard to methanol oxidation was found for a Ru coverage close to 40-50% at 0.3 and 0.5 V vs. RHE. However, the structure of such catalysts and the conditions of smdy are far from those used in DMFCs. Moreover, the surface composition of a bimetallic catalyst likely depends on the method of preparation of the catalyst [Caillard et al., 2006] and on the potential [Blasini et al., 2006]. [Pg.350]

Figure 11.11 Linear cyclic voltammograms of carbon-supported nanosized Pt and Pt-Cr alloy catalysts with different atomic ratios (prepared using the carbonyl route [Yang et al., 2004]) recorded in 0.5 M HCIO4 saturated with pure oxygen at a scan rate of 5 mV s and a rotation speed of 2000 rev min Current densities are normalized to the geometric surface... Figure 11.11 Linear cyclic voltammograms of carbon-supported nanosized Pt and Pt-Cr alloy catalysts with different atomic ratios (prepared using the carbonyl route [Yang et al., 2004]) recorded in 0.5 M HCIO4 saturated with pure oxygen at a scan rate of 5 mV s and a rotation speed of 2000 rev min Current densities are normalized to the geometric surface...
Dendrimers are attractive nanosize model compounds because of their globular architecture and their highly functionalized surface. These hyperbranched compounds are synthesized in a repetitive reaction sequence of nearly quantitative reactions. The synthetic route can either be divergent, starting from the nucleus toward the surface, or convergent, where dendrons or wedges are covalently linked to a polyfunctional nucleus. The number of metallodendrimers is still limited.493-506... [Pg.598]


See other pages where Surface nanosized is mentioned: [Pg.159]    [Pg.159]    [Pg.540]    [Pg.300]    [Pg.301]    [Pg.164]    [Pg.251]    [Pg.794]    [Pg.54]    [Pg.283]    [Pg.295]    [Pg.229]    [Pg.507]    [Pg.777]    [Pg.779]    [Pg.178]    [Pg.278]    [Pg.315]    [Pg.221]    [Pg.204]    [Pg.12]    [Pg.27]    [Pg.38]    [Pg.40]    [Pg.91]    [Pg.97]    [Pg.97]    [Pg.101]    [Pg.152]    [Pg.332]    [Pg.356]    [Pg.391]    [Pg.393]    [Pg.419]    [Pg.524]    [Pg.120]    [Pg.172]    [Pg.198]    [Pg.236]    [Pg.239]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Nanosize

Nanosized

© 2024 chempedia.info