Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface Groups on Titanium Dioxide

Titanium dioxide differs from silica mainly in two respects (1) the Ti + ions are octahedrally coordinated in all three modifications of TiOji (2) the Ti—0 bond is more pronouncedly ionic than the Si—O bond. Using Pauling s electronegativity values (297), one calculates a 63% ionic character for the Ti—0 single bond versus 50% for Si—O. In SiOj, there is certainly some double bond character involving 3d orbitals of the Si atom, causing lowered ionic character. Therefore, characteristic differences should be expected regarding the surface chemistry. [Pg.249]

Titanium dioxide occurs in three crystalline modifications anatase, rutile, and brookite. In all three forms, each Ti + ion is surrounded by six 0 ions and each ion has three Ti + neighbors. Both anatase and rutile are important white pigments which are produced on a large scale. Even though their surface chemistry is very important for their technological application, astonishingly little has been published in the chemical literature on this subject. However, it is very likely that many investigations have been undertaken in industrial laboratories. [Pg.249]

Structures of (001) crystal faces of anatase (o) clean, (6) hydrated (c) hydroxyl-ated [cut through (100) face]. The broken circles indicate how the lattice would continue. [Pg.250]

Using infrared spectroscopy, Yates (299) proved the existence of hydroxyl groups on anatase as well as on rutile. Both forms still contained some adsorbed molecular water after evacuation at 150°, as evidenced by the bending vibration at 1605 cm b After outgassing at 350°, no free water was detected. There remained two OH stretching absorptions in the case of anatase (at 3715 and 3675 cm ) and one weak band at 3680 cm with rutile. This is indication of the existence of two different types of OH groups on anatase. These results were confirmed by Smith (300). [Pg.251]

Hollabaugh and Chessick (301) concluded from adsorption studies with water, m-propanol, and w-butyl chloride that the surface of rutile is covered with hydroxyl groups. After evacuation at 450°, a definite chemisorption of water vapor was observed as well as of n-propanol. The adsorption of -butyl chloride was very little influenced by the outgassing temperature of the rutile sample (90 and 450°). A type I adsorption isotherm was observed after outgassing at 450°. Apparently surface esters had formed, forming a hydrocarbonlike surface. No further vapor was physically adsorbed up to high relative pressures. [Pg.251]


See other pages where Surface Groups on Titanium Dioxide is mentioned: [Pg.179]    [Pg.249]   


SEARCH



Dioxide surface

Surface groupings

Surface groups

Titanium dioxide

© 2024 chempedia.info