Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface forces electrical double layer

Surface Potential. Electric Double Layer. Because the interfaces on each side of the thin-film are equivalent, any interfacial charge will be equally carried on each side of the film. If a foam film is stabilized by ionic surfactants, then their presence at the interfaces will induce a repulsive force that opposes the thinning process. The magnitude of the force will depend on the charge density and the film thickness. [Pg.31]

The adhesion between two solid particles has been treated. In addition to van der Waals forces, there can be an important electrostatic contribution due to charging of the particles on separation [76]. The adhesion of hematite particles to stainless steel in aqueous media increased with increasing ionic strength, contrary to intuition for like-charged surfaces, but explainable in terms of electrical double-layer theory [77,78]. Hematite particles appear to form physical bonds with glass surfaces and chemical bonds when adhering to gelatin [79]. [Pg.454]

Miyatani T, Florii M, Rosa A, Fu]ihira M and Marti O 1997 Mapping of electric double-layer force between tip and sample surfaces in water with pulsed-force-mode atomic force microscopy Appl. Phys. Lett. 71 2632... [Pg.1725]

The physical separation of charge represented allows externally apphed electric field forces to act on the solution in the diffuse layer. There are two phenomena associated with the electric double layer that are relevant electrophoresis when a particle is moved by an electric field relative to the bulk and electroosmosis, sometimes called electroendosmosis, when bulk fluid migrates with respect to an immobilized charged surface. [Pg.178]

The basic mechanism of passivation is easy to understand. When the metal atoms of a fresh metal surface are oxidised (under a suitable driving force) two alternative processes occur. They may enter the solution phase as solvated metal ions, passing across the electrical double layer, or they may remain on the surface to form a new solid phase, the passivating film. The former case is active corrosion, with metal ions passing freely into solution via adsorbed intermediates. In many real corrosion cases, the metal ions, despite dissolving, are in fact not very soluble, or are not transported away from the vicinity of the surface very quickly, and may consequently still... [Pg.126]

In the above we have assumed that no other forces than the electrical are acting at the surface of separation. In general, there will be the capillary forces as well, and we have to take account of the influence of the electrical double layer in considering the adsorption of an electrolyte. If w is the area of the surface, o the interfacial tension, e the charge per unit area, and E the difference of potential, we shall have ... [Pg.473]

For solid surfaces interacting in air, the adhesion forces mainly result from van der Waals interaction and capillary force, but the effects of electrostatic forces due to the formation of an electrical double-layer have to be included for analyzing adhesion in solutions. Besides, adhesion has to be studied as a dynamic process in which the approach and separation of two surfaces are always accompanied by unstable motions, jump in and out, attributing to the instability of sliding system. [Pg.184]

Surface forces measurement is a unique tool for surface characterization. It can directly monitor the distance (D) dependence of surface properties, which is difficult to obtain by other techniques. One of the simplest examples is the case of the electric double-layer force. The repulsion observed between charged surfaces describes the counterion distribution in the vicinity of surfaces and is known as the electric double-layer force (repulsion). In a similar manner, we should be able to study various, more complex surface phenomena and obtain new insight into them. Indeed, based on observation by surface forces measurement and Fourier transform infrared (FTIR) spectroscopy, we have found the formation of a novel molecular architecture, an alcohol macrocluster, at the solid-liquid interface. [Pg.3]

Figure 2.4 Sketch of an electric double layer next to a negatively charged solid surface. Through balance of thermal motion and electrostatic forces a rapidly decaying electric potential IFdevelops inside the liquid phase. Figure 2.4 Sketch of an electric double layer next to a negatively charged solid surface. Through balance of thermal motion and electrostatic forces a rapidly decaying electric potential IFdevelops inside the liquid phase.
Electric double layers are formed in heterogeneous electrochemical systems at interfaces between the electrolyte solution and other condncting or nonconducting phases this implies that charges of opposite sign accumnlate at the surfaces of the adjacent phases. When an electric held is present in the solntion phase which acts along snch an interface, forces arise that produce (when this is possible) a relative motion of the phases in opposite directions. The associated phenomena historically came to be known as electrokinetic phenomena or electrokinetic processes. These terms are not very fortunate, since a similar term, electrochemical kinetics, commonly has a different meaning (see Part 11). [Pg.595]

Certain negative ions such as Cl , Br, CNS , N03 and SO2 show an adsorption affinity to the mercury surface so in case (a), where the overall potential of the dme is zero, the anions transfer the electrons from the Hg surface towards the inside of the drop, so that the resulting positive charges along the surface will form an electric double layer with the anions adsorbed from the solution. Because according to Coulomb s law similar charges repel one another, a repulsive force results that counteracts the Hg surface tension, so that the apparent crHg value is lowered. [Pg.139]

A classic definition of electrochemical ultracapacitors or supercapacitors summarizes them as devices, which store electrical energy via charge in the electrical double layer, mainly by electrostatic forces, without phase transformation in the electrode materials. Most commercially available capacitors consist of two high surface area carbon electrodes with graphitic or soot-like material as electrical conductivity enhancement additives. Chapter 1 of this volume contains seven papers with overview presentations, and development reports, as related to new carbon materials for this emerging segment of the energy market. [Pg.26]

Porous carbons are among the most attractive electrode materials for electric double layer capacitors (EDLC), where the charge accumulation occurs mainly by electrostatic attraction forces at the clcctrode/electrolyte interface [1-3]. Advantages of this class of materials include high surface... [Pg.86]

Various anionic compounds such as halides, carboxylates or polyoxoanions, generally dissolved in aqueous solution, can establish electrostatic stabilization. Adsorption of these compounds onto the metallic surface and the associated countercations necessary for charge balance produces an electrical double-layer around the particles (Scheme 9.1). The result is a coulombic repulsion between the particles. At short interparticle distances, if the electric potential associated with the double layer is sufficiently high, repulsive forces opposed to the van der Waals forces will be significant to prevent particle aggregation. [Pg.218]

As we have seen, the electric state of a surface depends on the spatial distribution of free (electronic or ionic) charges in its neighborhood. The distribution is usually idealized as an electric double layer one layer is envisaged as a fixed charge or surface charge attached to the particle or solid surface while the other is distributed more or less diffusively in the liquid in contact (Gouy-Chapman diffuse model, Fig. 3.2). A balance between electrostatic and thermal forces is attained. [Pg.47]

To complement the models for the surface reactions, a model for the electric double layer is needed. Current models for the electric double layer are based on the work of Stern (21), who viewed the interface as a series of planes or layers, into which species were adsorbed by chemical and electrical forces. A detailed discussion of the application of these models to oxide surfaces is given by Westall and Hohl (2). [Pg.64]

The second parameter influencing the movement of all solutes in free-zone electrophoresis is the electroosmotic flow. It can be described as a bulk hydraulic flow of liquid in the capillary driven by the applied electric field. It is a consequence of the surface charge of the inner capillary wall. In buffer-filled capillaries, an electrical double layer is established on the inner wall due to electrostatic forces. The double layer can be quantitatively described by the zeta-potential f, and it consists of a rigid Stern layer and a movable diffuse layer. The EOF results from the movement of the diffuse layer of electrolyte ions in the vicinity of the capillary wall under the force of the electric field applied. Because of the solvated state of the layer forming ions, their movement drags the whole bulk of solution. [Pg.22]


See other pages where Surface forces electrical double layer is mentioned: [Pg.2766]    [Pg.27]    [Pg.396]    [Pg.17]    [Pg.191]    [Pg.82]    [Pg.37]    [Pg.139]    [Pg.140]    [Pg.140]    [Pg.209]    [Pg.23]    [Pg.118]    [Pg.727]    [Pg.252]    [Pg.210]    [Pg.367]    [Pg.209]    [Pg.106]    [Pg.18]    [Pg.184]    [Pg.222]    [Pg.361]    [Pg.270]    [Pg.4]    [Pg.58]    [Pg.28]    [Pg.104]    [Pg.233]    [Pg.58]    [Pg.98]    [Pg.26]    [Pg.63]    [Pg.139]   


SEARCH



Double-layer forces

Electric double layer

Electric force

Electrical double layer

Electrical/electrically double-layer

Force electric double layer

Forces electrical double-layer

Layered surfaces

Surface double layer

Surface forces

Surface layers

© 2024 chempedia.info