Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface area texture

The components in catalysts called promoters lack significant catalytic activity tliemselves, but tliey improve a catalyst by making it more active, selective, or stable. A chemical promoter is used in minute amounts (e.g., parts per million) and affects tlie chemistry of tlie catalysis by influencing or being part of tlie catalytic sites. A textural (structural) promoter, on tlie otlier hand, is used in massive amounts and usually plays a role such as stabilization of tlie catalyst, for instance, by reducing tlie tendency of tlie porous material to collapse or sinter and lose internal surface area, which is a mechanism of deactivation. [Pg.2702]

Soaking a siUca gel in dilute ammonium hydroxide solution at 50—85°C can result in significant coarsening of the gel texture (5). Aging and thermal treatments result in a one-way process, ie, loss of specific surface area and in increase in pore size. The pore size can also be enlarged by dissolution of some of the siUca. Treating a siUca gel with O.S-N KOH or dilute HF can enlarge the pores from 0.7 to 3.7 nm (3). [Pg.253]

The industrial catalysts for ammonia synthesis consist of far more than the catalyticaHy active iron (74). There are textural promoters, alumina and calcium oxide, that minimise sintering of the iron and a chemical promoter, potassium (about 1 wt % of the catalyst), and possibly present as K2O the potassium is beheved to be present on the iron surface and to donate electrons to the iron, increasing its activity for the dissociative adsorption of N2. The primary iron particles are about 30 nm in size, and the surface area is about 15 m /g. These catalysts last for years. [Pg.177]

These materials are designed to reduce water from condensation dripping on equipment, etc. They often incorporate particles of cork so that water is absorbed. They are generally thick films to provide some insulation and have a rough textured surface finish to increase the surface area and encourage water evaporation. In general, physical methods of prevention such as adequate ventilation, etc. are more effective. [Pg.133]

The BET surface area values are also reported with the distribution of porosity between microporosity (pore diameter <1.8 nm) deduced from N2 adsorption isotherms (t-curves) and mesoporosity (pore diameter > 1.8 nm). The following trend is observed for high atomic M/HPA ratio used for the precipitation, the precipitates exhibited high surface area mainly due to microporosity. However, depending on the nature of the coxmter cation and also of the previous ratio values, the textural characteristics were not similar. In particular, it is interesting to note the presence of mesopores for (NH4)2.4P, CS2.9P, CS2.7P and Cs2.4Si samples. [Pg.593]

Pore. size and surface area distribution. Pore sizes and pore volume distributions may be calculated from the relative pressures at which pores are filled (in the adsorption mode) or emptied (in the desorption mode). Fig. 3.45 shows the pore size distribution of a commercial y-alumina. The distribution is very broad both meso- and macropores are present. In practice this is usually a desired situation a texture consisting of a network of large pores (main roads) and small pores (side roads) is ideal. [Pg.101]

Table 1 gives the textural properties of the support and catalyst samples. As expected the pore volumes and the surface areas of the catalysts are lower than those of the support. This indicates that the palladium blocks some part of the... [Pg.529]

While keeping in mind all these implications, the primary requirement in an attempt to store a huge charge based on the electrostatic forces seems to be high surface area of an activated carbon used. Among different ways of porosity development in carbons, the treatment with an excess of potassium hydroxide is most efficient in terms of microporous texture generation. Porous materials with BET surface areas in excess of 3000 m2/g could be prepared using various polymeric and carbonaceous type precursors [5,6]. [Pg.87]

Varying KOH ratio in the mixture is a very effective way of controlling porosity development in resultant activated carbons. The trend in the pore volume and BET surface area increase seems to be similar for various precursors (Fig. la). It is interesting to note, however, a sharp widening of pores, resulting in clearly mesoporous texture, when a large excess of KOH is used in reaction with coal semi-coke (Fig. lb). Increase in the reaction temperature within 600-900°C results in a strong development... [Pg.89]

In spite of such positive effects of the presence of ammonia during preparation, the particles sizes remain important on Au/FAU-2, comparable to particles previously described for similar Au/zeolites [1,2]. Noticeably, they are much bigger than expected from the insertion of the Au particles inside the pores. On the contrary, very small gold nanoparticles with a mean diameter of about 2 nm are obtained on the BEA support, that can be due to the textural properties and high external surface area of this support made... [Pg.90]

Nitrogen adsorption/desorption isotherms on Zeolite and V-Mo-zeolite are very similar and close to a type I characteristic of microporous materials, although the V-Mo-catalysts show small hysterisis loop at higher partial pressures, which reveals some intergranular mesoporosity. Table 1 shows that BET surface area, microporous and porous volumes, decrease after the introduction of Molybdenum and vanadium in zeolite indicating a textural alteration probably because of pore blocking by vanadium or molybdenum species either dispersed in the channels or deposited at the outer surface of the zeolite. The effect is far less important for the catalysts issued from ZSM-5. [Pg.130]

Figure 1 shows that the catalysts maintain their mesoporous structure with type IV isotherm. It can be observed a reduction in surface area, pore volume and pore diameter and slight increase in textural porosity as the concentration of aluminum increases (Table 1), due to the increase in the wall thickness in the mesoporous material as we have found previously [3],... [Pg.210]

The chemical compositions of the samples were obtained by ICP in a Varian 715-ES ICP-Optical Emission Spectrometer. Powder X-ray diffraction was performed in a Philips X pert diffractometer using monochromatized CuKa. The crystallinity of the zeolites was obtained from the intensity of the most intense reflection at 23° 20 considering the parent HZ5 sample as 100% crystalline. Textural properties were obtained by nitrogen physisorption at -196°C in a Micromeritics ASAP 2000 equipment. Surface areas were calculated by the B.E.T. approach and the micropore volumes were derived from the corresponding /-plots. Prior to the adsorption measurements the samples were degassed at 400°C and vacuum overnight. [Pg.322]

The XRD patterns demonstrated that the MCM-22 zeolites were well crystallized and pillars have been created in the MCM-36 sample, respectively. Thus, the last material exhibited a typical intense peak at 29 2°, corresponding to a Aspacing of 4 nm. The textural properties of solids (Table 1) indicated that the pillaring in MCM-36 resulted in increases in BET specific surface area and external surface area compared with the MCM-22 zeolite. [Pg.386]

The N2-physisorption characterisation results show that, no significant variations (less than 5%) are observed on the BET surface area, the total pore volume and the micropore volume of the different Pd-ZSM-5 catalysts, when the preparation method, the pretreatment gas, the charge-balancing cations and the palladium loading are modified. This result suggests that the ZSM-5 texture is stable with respect to the preparative parameter variations and that the observed activity differences are not related to any... [Pg.411]

A researcher in the field of heterogeneous catalysis, alongside the important studies of catalysts chemical properties (i.e., properties at a molecular level), inevitably encounters problems determining the catalyst structure at a supramolecular (textural) level. A powerful combination of physical and chemical methods (numerous variants x-ray diffraction (XRD), IR, nuclear magnetic resonance (NMR), XPS, EXAFS, ESR, Raman of Moessbauer spectroscopy, etc. and achievements of modem analytical chemistry) may be used to study the catalysts chemical and phase molecular structure. At the same time, characterizations of texture as a fairytale Cinderella fulfill the routine and very frequently senseless work, usually limited (obviously in our modem transcription) with electron microscopy, formal estimation of a surface area by a BET method, and eventually with porosimetry without any thorough insight. [Pg.258]


See other pages where Surface area texture is mentioned: [Pg.48]    [Pg.203]    [Pg.1487]    [Pg.48]    [Pg.203]    [Pg.1487]    [Pg.147]    [Pg.253]    [Pg.257]    [Pg.173]    [Pg.342]    [Pg.396]    [Pg.18]    [Pg.252]    [Pg.200]    [Pg.609]    [Pg.722]    [Pg.786]    [Pg.124]    [Pg.94]    [Pg.95]    [Pg.810]    [Pg.309]    [Pg.276]    [Pg.93]    [Pg.96]    [Pg.98]    [Pg.129]    [Pg.140]    [Pg.458]    [Pg.173]    [Pg.174]    [Pg.229]    [Pg.362]    [Pg.173]    [Pg.84]    [Pg.112]    [Pg.97]   
See also in sourсe #XX -- [ Pg.245 ]




SEARCH



Surface texture

Texture specific surface area

Textured surfaces

© 2024 chempedia.info