Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supersaturation surface

Keywords Chemical vapour deposition Organometallic chemical vapour deposition Nucleation Supersaturation Surface chemistry... [Pg.148]

When the surface is initially singular, the required ledges can be nucleated by the clustering of supersaturated surface vacancies in monolayer surface cavities or... [Pg.291]

Saturation ratio Critical supersaturation Surface tension Temperature Volume... [Pg.203]

Here, r is positive and there is thus an increased vapor pressure. In the case of water, P/ is about 1.001 if r is 10" cm, 1.011 if r is 10" cm, and 1.114 if r is 10 cm or 100 A. The effect has been verified experimentally for several liquids [20], down to radii of the order of 0.1 m, and indirect measurements have verified the Kelvin equation for R values down to about 30 A [19]. The phenomenon provides a ready explanation for the ability of vapors to supersaturate. The formation of a new liquid phase begins with small clusters that may grow or aggregate into droplets. In the absence of dust or other foreign surfaces, there will be an activation energy for the formation of these small clusters corresponding to the increased free energy due to the curvature of the surface (see Section IX-2). [Pg.54]

The resistance to nucleation is associated with the surface energy of forming small clusters. Once beyond a critical size, the growth proceeds with the considerable driving force due to the supersaturation or subcooling. It is the definition of this critical nucleus size that has consumed much theoretical and experimental research. We present a brief description of the classic nucleation theory along with some examples of crystal nucleation and growth studies. [Pg.328]

Because of the large surface tension of liquid mercury, extremely large supersaturation ratios are needed for nucleation to occur at a measurable rate. Calculate rc and ric at 400 K assuming that the critical supersaturation is x = 40,000. Take the surface tension of mercury to be 486.5 ergs/cm. ... [Pg.342]

Calculate what the critical supersaturation ratio should be for water if the frequency factor in Eq. IX-10 were indeed too low by a factor of 10 . Alternatively, taking the observed value of the critical supersaturation ratio as 4.2, what value for the surface tension of water would the corrected theory give ... [Pg.342]

Although they may be completely soluble in the lower temperature bulk water, these compounds (eg, calcium carbonate, calcium phosphate, and magnesium siUcate) supersaturate in the higher temperature water adjacent to the heat-transfer surface and precipitate on the surface. [Pg.270]

T — T (4) the ratio of the solute concentration and the equiUbrium concentration, c A, which is known as relative saturation or (5) the ratio of the difference between the solute concentration and the equiUbrium concentration to the equiUbrium concentration, s — [c — c which is known as relative supersaturation. This term has often been represented by O s is used here because of the frequent use of O for iaterfacial energy or surface tension and for variance ia distribution functions. [Pg.341]

Models used to describe the growth of crystals by layers call for a two-step process (/) formation of a two-dimensional nucleus on the surface and (2) spreading of the solute from the two-dimensional nucleus across the surface. The relative rates at which these two steps occur give rise to the mononuclear two-dimensional nucleation theory and the polynuclear two-dimensional nucleation theory. In the mononuclear two-dimensional nucleation theory, the surface nucleation step occurs at a finite rate, whereas the spreading across the surface is assumed to occur at an infinite rate. The reverse is tme for the polynuclear two-dimensional nucleation theory. Erom the mononuclear two-dimensional nucleation theory, growth is related to supersaturation by the equation. [Pg.344]

Although surface-cooled types of MSMPR crystalhzers are available, most users prefer crystallizers employing vaporization of solvents or of refrigerants. The primary reason for this preference is that heat transferred through the critical supersaturating step is through a boil-ing-hquid-gas surface, avoiding the troublesome solid deposits that can form on a metal heat-transfer surface. [Pg.1663]

An Oslo surface-cooled crystallizer is illustrated in Fig. 18-71. Supersaturation is developed in the circulated liquor by chilling in the cooler H. This supersaturated liquor is contacted with the suspension of ciystals in the suspension chamber at E. At the top of the suspension chamber a stream of mother hquor D can be removed to be used for fines removal and destruction. This feature can be added on either type of equipment. Fine ciystals withdrawn from the top of the suspension are destroyed, thereby reducing the overall number of ciys-tals in the system and increasing the particle size of the remaining product ciystals. [Pg.1667]

A reduction in the magma density will generally increase nucleation and decrease the particle size. This technique has the disadvantage that crystal formation on the equipment surfaces increases because lower shiny densities create higher levels of supersaturation within the equipment, particularly at the critical boiling surface in a vaporization-type ciystaUizer. [Pg.1671]

The real atmosphere is more than a dry mixture of permanent gases. It has other constituents—vapor of both water and organic liquids, and particulate matter held in suspension. Above their temperature of condensation, vapor molecules act just like permanent gas molecules in the air. The predominant vapor in the air is water vapor. Below its condensation temperature, if the air is saturated, water changes from vapor to liquid. We are all familiar with this phenomenon because it appears as fog or mist in the air and as condensed liquid water on windows and other cold surfaces exposed to air. The quantity of water vapor in the air varies greatly from almost complete dryness to supersaturation, i.e., between 0% and 4% by weight. If Table 2-1 is compiled on a wet air basis at a time when the water vapor concentration is 31,200 parts by volume per million parts by volume of wet air (Table 2-2), the concentration of condensable organic vapors is seen to be so low compared to that of water vapor that for all practical purposes the difference between wet air and dry air is its water vapor content. [Pg.21]

Charles Frank and his recognition, in 1949, that the observation of ready crystal growth at small supersaturations required the participation of screw dislocations emerging from the crystal surface (Section 3.2.3.3) in this way the severe mismatch with theoretical estimates of the required supersaturation could be resolved. [Pg.199]

Primary nucleation is the classical form of nucleation. It occurs mainly at high levels of supersaturation and is thus most prevalent during unseeded crystallization or precipitation. This mode of nucleation may be subdivided into either homogeneous viz. spontaneously from clear solution, or heterogeneous viz. in the presence of dust particles in suspension, or solid surfaces. [Pg.125]


See other pages where Supersaturation surface is mentioned: [Pg.402]    [Pg.335]    [Pg.239]    [Pg.366]    [Pg.529]    [Pg.3]    [Pg.402]    [Pg.335]    [Pg.239]    [Pg.366]    [Pg.529]    [Pg.3]    [Pg.335]    [Pg.129]    [Pg.212]    [Pg.402]    [Pg.391]    [Pg.445]    [Pg.133]    [Pg.459]    [Pg.494]    [Pg.519]    [Pg.524]    [Pg.271]    [Pg.342]    [Pg.343]    [Pg.344]    [Pg.347]    [Pg.347]    [Pg.356]    [Pg.357]    [Pg.1664]    [Pg.1665]    [Pg.1668]    [Pg.1668]    [Pg.1671]    [Pg.117]    [Pg.96]    [Pg.125]    [Pg.171]   
See also in sourсe #XX -- [ Pg.8 , Pg.9 , Pg.11 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.22 , Pg.25 , Pg.26 , Pg.28 , Pg.29 , Pg.30 , Pg.32 , Pg.33 , Pg.37 , Pg.38 , Pg.42 , Pg.46 ]




SEARCH



Supersaturation

Supersaturations

© 2024 chempedia.info