Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercritical fluids, table

To illustrate the hybrid properties of supercritical fluids. Table 1.2 gives some characteristic values for density, viscosity, and diffusivity. The unique properties of supercritical fluids as compared to liquids and gases provide opportunities for a variety of industrial processes. [Pg.6]

The most common mobile phase for supercritical fluid chromatography is CO2. Its low critical temperature, 31 °C, and critical pressure, 72.9 atm, are relatively easy to achieve and maintain. Although supercritical CO2 is a good solvent for nonpolar organics, it is less useful for polar solutes. The addition of an organic modifier, such as methanol, improves the mobile phase s elution strength. Other common mobile phases and their critical temperatures and pressures are listed in Table 12.7. [Pg.596]

Watei has an unusually high (374°C) ctitical tempeiatuie owing to its polarity. At supercritical conditions water can dissolve gases such as O2 and nonpolar organic compounds as well as salts. This phenomenon is of interest for oxidation of toxic wastewater (see Waste treatments, hazardous waste). Many of the other more commonly used supercritical fluids are Hsted in Table 1, which is useful as an initial screening for a potential supercritical solvent. The ultimate choice for a specific appHcation, however, is likely to depend on additional factors such as safety, flammabiUty, phase behavior, solubiUty, and expense. [Pg.220]

Table 1. Critical Properties for Common Supercritical Fluids ... Table 1. Critical Properties for Common Supercritical Fluids ...
Table 2. Comparison of Properties of Gases, Supercritical Fluids, and Liquids... Table 2. Comparison of Properties of Gases, Supercritical Fluids, and Liquids...
A paiticularly attiactive and useful feature of supeicritical fluids is that these materials can have properties somewhere between those of a gas and a hquid (Table 2). A supercritical fluid has more hquid-hke densities, and subsequent solvation strengths, while possessiag transport properties, ie, viscosities and diffusivities, that are more like gases. Thus, an SCF may diffuse iato a matrix more quickly than a Hquid solvent, yet still possess a Hquid-like solvent strength for extracting a component from the matrix. [Pg.221]

TABLE 22-11 Commercial Applications of Supercritical Fluid Separations Technology... [Pg.2000]

Transport Properties Although the densities of supercritical fluids approach those of conventional hquids, their transport properties are closer to those of gases, as shown for a typical SCF such as CO9 in Table 22-12. For example, the viscosity is several orders of magnitude lower than at liquidlike conditions. The self-diffusion coefficient ranges between 10" and 10" em /s, and binaiy-diffusiou coefficients are similar [Liong, Wells, and Foster, J. Supercritical Fluids 4, 91 (1991) Catchpole and King, Ind. Eng. Chem. Research, 33,... [Pg.2001]

TABLE 22-12 Density and Transport Properties of a GaS/ Supercritical Fluid/ and a Liquid... [Pg.2001]

One example of normal-phase liquid chromatography coupled to gas chromatography is the determination of alkylated, oxygenated and nitrated polycyclic aromatic compounds (PACs) in urban air particulate extracts (97). Since such extracts are very complex, LC-GC is the best possible separation technique. A quartz microfibre filter retains the particulate material and supercritical fluid extraction (SPE) with CO2 and a toluene modifier extracts the organic components from the dust particles. The final extract is then dissolved in -hexane and analysed by NPLC. The transfer at 100 p.1 min of different fractions to the GC system by an on-column interface enabled many PACs to be detected by an ion-trap detector. A flame ionization detector (PID) and a 350 p.1 loop interface was used to quantify the identified compounds. The experimental conditions employed are shown in Table 13.2. [Pg.362]

Table 12-1. Physical parameters of selected supercritical fluids. Table 12-1. Physical parameters of selected supercritical fluids.
Table 5.2 Critical points of some common supercritical fluids... Table 5.2 Critical points of some common supercritical fluids...
TABLE 20-12 Physical Properties of a Supercritical Fluid Fall between Those of a Typical Gas and Liquid... [Pg.14]

Table 3.11 Critical parameters for some fluids used in analytical supercritical fluid techniques (data taken from SF Solver package, Isco, USA)... Table 3.11 Critical parameters for some fluids used in analytical supercritical fluid techniques (data taken from SF Solver package, Isco, USA)...
Table 3.12 Density, viscosity, and diffusion coefficient of gas, liquid and supercritical fluids... Table 3.12 Density, viscosity, and diffusion coefficient of gas, liquid and supercritical fluids...
Table 4.27 Columns used for supercritical fluid chromatography... Table 4.27 Columns used for supercritical fluid chromatography...
A powerful advantage of SFC is that more detectors can be interfaced with SFC than with any other chromatographic technique (Table 4.30). There are only a few detectors which operate under supercritical conditions. Consequently, as the sample is transferred from the chromatograph to the detector, it must undergo a phase change from a supercritical fluid to a liquid or gas before detection. Most detectors can be made compatible with both cSFC and pSFC if flow and pressure limits are taken into account appropriately. GC-based detectors such as FID and LC-based detectors such as UVD are the most commonly used, but the detection limits of both still need to be improved to reach sensitivity for SFC compatible with that in LC and GC. Commercial cSFC-FID became available in... [Pg.210]

Sampling methods in SFC are far more restricted than in the case of GC (Section 4.3 and Table 7.5). Not surprisingly, supercritical fluid extraction is an obvious choice. [Pg.432]

On-line SFE-SFC modes present several distinct advantages that are beyond reach of either technique when used separately (Table 7.13). An obvious advantage of SFE is that it is an ideal way to introduce a sample into an SFC system. Because the injection-solvent is the same as the mobile phase, in this respect the criteria for a successful coupling of different techniques are fulfilled [94], i.e. the output characteristics from the first instrument and the input characteristics of the second instrument are compatible. Supercritical fluid techniques can separate high-MW compounds are significantly faster than classical Soxhlet extractions and require less heat and solvent. SFE-SFC techniques are versatile,... [Pg.440]

Smith and Udseth [154] first described SFE-MS in 1983. Direct fluid injection (DFT) mass spectrometry (DFT-MS, DFI-MS/MS) utilises supercritical fluids for solvation and transfer of materials to a mass-spectrometer chemical ionisation (Cl) source. Extraction with scC02 is compatible with a variety of Cl reagents, which allow a sensitive and selective means for ionising the solute classes of interest. If the interfering effects of the sample matrix cannot be overcome by selective ionisation, techniques based on tandem mass spectrometry can be used [7]. In these cases, a cheaper and more attractive alternative is often to perform some form of chromatography between extraction and detection. In SFE-MS, on-line fractionation using pressure can be used to control SCF solubility to a limited extent. The main features of on-line SFE-MS are summarised in Table 7.20. It appears that the direct introduction into a mass spectrometer of analytes dissolved in supercritical fluids without on-line chromatography has not actively been pursued. [Pg.451]

In 1994, we reported the dispersion polymerization of MM A in supercritical C02 [103]. This work represents the first successful dispersion polymerization of a lipophilic monomer in a supercritical fluid continuous phase. In these experiments, we took advantage of the amphiphilic nature of the homopolymer PFOA to effect the polymerization of MMA to high conversions (>90%) and high degrees of polymerization (> 3000) in supercritical C02. These polymerizations were conducted in C02 at 65 °C and 207 bar, and AIBN or a fluorinated derivative of AIBN were employed as the initiators. The results from the AIBN initiated polymerizations are shown in Table 3. The spherical polymer particles which resulted from these dispersion polymerizations were isolated by simply venting the C02 from the reaction mixture. Scanning electron microscopy showed that the product consisted of spheres in the pm size range with a narrow particle size distribution (see Fig. 7). In contrast, reactions which were performed in the absence of PFOA resulted in relatively low conversion and molar masses. Moreover, the polymer which resulted from these precipitation... [Pg.123]


See other pages where Supercritical fluids, table is mentioned: [Pg.340]    [Pg.98]    [Pg.20]    [Pg.1265]    [Pg.340]    [Pg.98]    [Pg.20]    [Pg.1265]    [Pg.1078]    [Pg.1103]    [Pg.1287]    [Pg.596]    [Pg.219]    [Pg.2000]    [Pg.2000]    [Pg.300]    [Pg.14]    [Pg.14]    [Pg.306]    [Pg.401]    [Pg.817]    [Pg.818]    [Pg.81]    [Pg.83]    [Pg.88]    [Pg.480]    [Pg.310]    [Pg.249]   
See also in sourсe #XX -- [ Pg.11 , Pg.26 ]

See also in sourсe #XX -- [ Pg.11 , Pg.26 ]




SEARCH



© 2024 chempedia.info