Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Superconductors copper

The superconductor YBa2Cu30g.j, contains copper in both the +2 and +3 oxidation states. Procedures are described for synthesizing the superconductor, demonstrating the superconducting effect, and for determining the amount of Cu + and Cu + in the prepared material. [Pg.360]

Phinyocheep, P. Tang, 1. M. Determination of the Hole Concentration (Copper Valency) in the High Superconductors, /. Chem. Educ. 1994, 71, A115-A118. [Pg.360]

This experiment outlines a potentiometric titration for determining the valency of copper in superconductors in place of the visual end point used in the preceding experiment of Harris, Hill, and Hewston. The analysis of several different superconducting materials is described. [Pg.360]

C. P. Poole, Jr., T. Datta, and H. A. Farach, Copper Oxide Superconductors, John Wiley Sons, New York, 1988. [Pg.316]

Electrical and Electronic Applications. Silver neodecanoate [62804-19-7] has been used in the preparation of a capacitor-end termination composition (110), lead and stannous neodecanoate have been used in circuit-board fabrication (111), and stannous neodecanoate has been used to form patterned semiconductive tin oxide films (112). The silver salt has also been used in the preparation of ceramic superconductors (113). Neodecanoate salts of barium, copper, yttrium, and europium have been used to prepare superconducting films and patterned thin-fHm superconductors. To prepare these materials, the metal salts are deposited on a substrate, then decomposed by heat to give the thin film (114—116) or by a focused beam (electron, ion, or laser) to give the patterned thin film (117,118). The resulting films exhibit superconductivity above Hquid nitrogen temperatures. [Pg.106]

Coppet(II) oxide [1317-38-0] CuO, is found in nature as the black triclinic tenorite [1317-92-6] or the cubic or tetrahedral paramelaconite [71276-37 ]. Commercially available copper(II) oxide is generally black and dense although a brown material of low bulk density can be prepared by decomposition of the carbonate or hydroxide at around 300°C, or by the hydrolysis of hot copper salt solutions with sodium hydroxide. The black product of commerce is most often prepared by evaporation of Cu(NH2)4C02 solutions (35) or by precipitation of copper(II) oxide from hot ammonia solutions by addition of sodium hydroxide. An extremely fine (10—20 nm) copper(II) oxide has been prepared for use as a precursor in superconductors (36). [Pg.254]

There are presently four famihes of high-temperature superconductors under investigation for practical magnet appheations. Table 11-25 shows that all HTS are copper oxide ceramics even though the oxygen content may vary. However, this variation generally has little effect on the phvsical properties of importance to superconductivity. [Pg.1127]

The Industrial Revolution was made possible by iron in the form of steel, an alloy used for construction and transportation. Other d-block metals, both as the elements and in compounds, are transforming our present. Copper, for instance, is an essential component of some superconductors. Vanadium and platinum are used in the development of catalysts to reduce pollution and in the continuing effort to make hydrogen the fuel of our future. [Pg.776]

Influence of Valence, Electronegativity, Atomic Radii, and Crest-Trough Interaction with Phonons on the High-Temperature Copper Oxide Superconductors... [Pg.832]

The acetylacetonates are stable in air and readily soluble in organic solvents. From this standpoint, they have the advantage over the alkyls and other alkoxides, which, with the exception of the iron alkoxides, are not as easily soluble. They can be readily synthesized in the laboratory. Many are used extensively as catalysts and are readily available. They are also used in CVD in the deposition of metals such as iridium, scandium and rhenium and of compounds, such as the yttrium-barium-copper oxide complexes, used as superconductors. 1 1 PI Commercially available acetyl-acetonates are shown in Table 4.2. [Pg.91]

The deposition of thin films of the high-temperature superconductor yttrium-barium-copper oxide, YBa2Cu307, is obtained from the mixed halides, typically YCI3, Bal2, and CUCI2, with O2 and H2O as oxygen sources. Deposition temperatures are 870-910°C.f ]... [Pg.317]

The most likely CVD applications of these superconductors to reach the practical stage are coatings for semiconductor and other electronic-related applications. For 1 arger current-carrying applications, a superconductor coating over a metallic conductor such as copper may also become a practical design because of its advantage over a monolithic superconductor wire. It is able to handle current excursions and has better mechanical properties. [Pg.379]

One of the most exciting developments in materials science in recent years involves mixed oxides containing rare earth metals. Some of these compounds are superconductors, as described in our Chemistry and Technology Box. Below a certain temperature, a superconductor can carry an immense electrical current without losses from resistance. Before 1986, it was thought that this property was limited to a few metals at temperatures below 25 K. Then it was found that a mixed oxide of lanthanum, barium, and copper showed superconductivity at around 30 K, and since then the temperature threshold for superconductivity has been advanced to 135 K. [Pg.782]

Ceramic oxide superconductors have distinct atomic layers. The Cu-containing superconductors contain planes of copper and oxygen atoms, as the molecular view shows. These planes alternate with layers containing oxygen and the other metals that make up the superconductor. Superconductivity takes place in the Cu—O planes. [Pg.784]

For many applications, a superconductor must first be drawn into a wire. This has recently been accomplished. The photo shows a superconductor ribbon wrapped around the copper wires that it could replace. [Pg.785]

Among the high-temperature superconductors one finds various cuprates (i.e., ternary oxides of copper and barium) having a layered structure of the perovskite type, as well as more complicated oxides on the basis of copper oxide which also include oxides of yttrium, calcium, strontium, bismuth, thallium, and/or other metals. Today, all these oxide systems are studied closely by a variety of specialists, including physicists, chemists, physical chemists, and theoreticians attempting to elucidate the essence of this phenomenon. Studies of electrochemical aspects contribute markedly to progress in HTSCs. [Pg.630]

Ndi g5Ceo.i5Cu04 Localization-delocalization of copper pairs on Zn impurity centers in the copper sublattice of the HTc superconductor Ndj g5Ceo.i5Cu04 was observed by Zn Mossbauer emission spectroscopy... [Pg.268]


See other pages where Superconductors copper is mentioned: [Pg.644]    [Pg.155]    [Pg.180]    [Pg.384]    [Pg.434]    [Pg.137]    [Pg.196]    [Pg.433]    [Pg.247]    [Pg.28]    [Pg.279]    [Pg.280]    [Pg.333]    [Pg.77]    [Pg.1018]    [Pg.1182]    [Pg.173]    [Pg.315]    [Pg.315]    [Pg.805]    [Pg.833]    [Pg.834]    [Pg.331]    [Pg.782]    [Pg.801]    [Pg.178]    [Pg.249]    [Pg.250]    [Pg.78]    [Pg.176]   


SEARCH



Copper oxide ceramic superconductors

Copper oxide superconductors (

Copper oxide superconductors structure

Copper superconductor

Electronic Structure of Copper Oxide Superconductors

Superconductors layered perovskite copper oxide

© 2024 chempedia.info