Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supercapacitors redox capacitor

In the second type of supercapacitor, sometimes termed pseudocapacitors, redox capacitors or electrochemical capacitors, the non-Faradaic doublelayer charging process is accompanied by charge transfer. This Faradaic process must be characterized by extremely fast kinetics in order to allow device operation with high current density discharge pulses. [Pg.309]

The terms supercapacitor and ultracapacitor are used to describe any double layer or redox capacitor with specific energy and specific power intermediate to batteries and traditional capacitors. Typically, ultracapacitor refers to a device comprised of two carbonaceous electrodes whereas supercapacitor refers to a similar device in which the two carbonaceous electrodes are catalyzed with metal oxides such as Ru02. This chapter will use the term supercapacitor to describe EAP-based capacitors, since that seems to be the most commonly used term for such materials. Another charge storage configuration uses an EAP electrode and a battery-type carbonaceous electrode in what is known as a hybrid device (however, outside of the EAP-based supercapacitor field, hybrid may refer to the combination of a battery electrode such as nickel hydroxide with a carbon electrode) [1]. [Pg.1392]

Figure 2. Representation of (A, top) an electrochemical capacitor (supercapacitor), illustrating the energy storage in the electric double layers at the electrode—electrolyte interfaces, and (B, bottom) a fuel cell showing the continuous supply of reactants (hydrogen at the anode and oxygen at the cathode) and redox reactions in the cell. Figure 2. Representation of (A, top) an electrochemical capacitor (supercapacitor), illustrating the energy storage in the electric double layers at the electrode—electrolyte interfaces, and (B, bottom) a fuel cell showing the continuous supply of reactants (hydrogen at the anode and oxygen at the cathode) and redox reactions in the cell.
In electrochemical capacitors (or supercapacitors), energy may not be delivered via redox reactions and, thus the use of the terms anode and cathode may not be appropriate but are in common usage. By orientation of electrolyte ions at the electrolyte/electrolyte interface, so-called electrical double layers (EDLs) are formed and released, which results in a parallel movement of electrons in the external wire, that is, in the energy-delivering process. [Pg.7]

Recently supercapacitors are attracting much attention as new power sources complementary to secondary batteries. The term supercapacitors is used for both electrochemical double-layer capacitors (EDLCs) and pseudocapacitors. The EDLCs are based on the double-layer capacitance at carbon electrodes of high specific areas, while the pseudocapacitors are based on the pseudocapacitance of the films of redox oxides (Ru02, Ir02, etc.) or redox polymers (polypyrrole, polythiophene, etc.). [Pg.316]

Recently, nanocrystalline VN has been discovered as an excellent material for supercapacitors (5). Compared to standard capacitors (where charge is stored due to the pure electrostatic attraction) in supercapacitors energy is stored at the electrolyte/solid interface in the form of the electrical double layer and due to the reversible redox reaction on the nanoparticle surface (Fig. 5.6) ... [Pg.118]

Depending on the charge storage mechanism, supercapacitors can be classified into two types electrical double layer capacitors (EDLC) and pseudocapadtors [108]. EDLCs store and release energy based on the accumulation of charges at the interface between a porous electrode, typicalty a carbonaceous material with high surface area, and the electrotyte. In pseudocapadtors, the mechanisms rely on fast and reversible Faradaic redox reactions at the surface and/or in the bulk. [Pg.270]

There has been growing interest in the field of supercapacitors due to their possible applications in medical devices, electrical vehicles, memory protection of computer electronics, and cellular communication devices. Their specific energies are generally greater than those of electrolytic capacitors and their specific power levels are higher than those of batteries. Supercapacitors can be divided into redox supercapacitors and electrical double layer capacitors (EDLCs). The former uses electroactive materials such as insertion-type compounds or conducting polymers as the electrode, while the latter uses carbon or other similar materials as the blocking electrode. [Pg.336]


See other pages where Supercapacitors redox capacitor is mentioned: [Pg.215]    [Pg.305]    [Pg.73]    [Pg.1392]    [Pg.355]    [Pg.1221]    [Pg.1222]    [Pg.1223]    [Pg.318]    [Pg.310]    [Pg.633]    [Pg.56]    [Pg.68]    [Pg.310]    [Pg.314]    [Pg.27]    [Pg.28]    [Pg.28]    [Pg.356]    [Pg.432]    [Pg.35]    [Pg.47]    [Pg.646]    [Pg.687]    [Pg.35]    [Pg.47]    [Pg.134]    [Pg.14]    [Pg.271]    [Pg.301]    [Pg.329]    [Pg.429]    [Pg.93]    [Pg.3]    [Pg.197]    [Pg.206]    [Pg.270]    [Pg.315]    [Pg.365]    [Pg.436]    [Pg.1393]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Capacitors

Redox capacitor

Supercapacitor

Supercapacitors

© 2024 chempedia.info