Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfur dioxide nucleophiles

Suitable catalysts are /-butylphenylmethyl peracetate and phenylacetjdperoxide or redox catalyst systems consisting of an organic hydroperoxide and an oxidizable sulfoxy compound. One such redox initiator is cumene—hydroperoxide, sulfur dioxide, and a nucleophilic compound, such as water. Sulfoxy compounds are preferred because they incorporate dyeable end groups in the polymer by a chain-transfer mechanism. Common thermally activated initiators, such as BPO and AIBN, are too slow for use in this process. [Pg.280]

Using sulfur trioxide plus chlorine, or sulfur dioxide plus chlorine, sulfur monochloride yields thionyl chloride [7719-09-7] SOCI2. Various nucleophilic reactions can displace the chlorine atoms of sulfur monochloride ... [Pg.138]

Reactions between A -(l-chloroalkyl)pyridinium chlorides 33 and amino acids in organic solvents have a low synthetic value because of the low solubility of the amine partner. A special protocol has been designed and tested in order to circumvent this drawback. Soon after the preparation of the salt, an aqueous solution of the amino acid was introduced in the reaction medium and the two-phase system obtained was heated under reflux for several hours. However, this was not too successful because sulfur dioxide, evolved during the preparation of the salt, was converted into sulfite that acted as an 5-nucleophile. As a result, A -(l-sulfonatoalkyl)pyridinium betaines such as 53 were obtained (Section IV,B,3) (97BSB383). To avoid the formation of such betaines, the salts 33 were isolated and reacted with an aqueous solution of L-cysteine (80) to afford thiazolidine-4-carboxylic acids hydrochlorides 81 (60-80% yields). [Pg.210]

An a-halosulfone 1 reacts with a base by deprotonation at the a -position to give a carbanionic species 3. An intramolecular nucleophilic substitution reaction, with the halogen substituent taking the part of the leaving group, then leads to formation of an intermediate episulfone 4 and the halide anion. This mechanism is supported by the fact that the episulfone 4 could be isolated. Subsequent extrusion of sulfur dioxide from 4 yields the alkene 2 ... [Pg.235]

Two-component methods represent the most widely applied principles in sulfone syntheses, including C—S bond formation between carbon and RSOz species of nucleophilic, radical or electrophilic character as well as oxidations of thioethers or sulfoxides, and cheletropic reactions of sulfur dioxide. Three-component methods use sulfur dioxide as a binding link in order to connect two carbons by a radical or polar route, or use sulfur trioxide as an electrophilic condensation agent to combine two hydrocarbon moieties by a sulfonyl bridge with elimination of water. [Pg.166]

An illustrative example of the Michael reaction is that of the thiirene dioxide 19b with either hydroxylamine or hydrazine to give desoxybenzoin oxime (87) and desoxybenzoin azine (88), respectively, in good yields6 (see equation 29). The results were interpreted in terms of an initial nucleophilic addition to the a, j8-unsaturated sulfone system, followed by loss of sulfur dioxide and tautomerization. Interestingly, the treatment of the corresponding thiirene oxide (18a) with hydroxylamine also afforded 86 (as well as the dioxime of benzoin), albeit in a lower yield, but apparently via the same mechanistic pathway6. [Pg.410]

In the presence of aqueous sodium hydroxide, 2-phenylthiirane dioxide gives styrene and the sulfinate 119. These results have been interpreted111 in terms of initial nucleophilic attack of hydroxide ion at the carbon atom in the 3-position of the three-membered ring in addition to sulfur dioxide elimination (see equation 48). [Pg.420]

The electrophilic character of sulfur dioxide does not only enable addition to reactive nucleophiles, but also to electrons forming sulfur dioxide radical anions which possess the requirements of a captodative" stabilization (equation 83). This electron transfer occurs electrochemically or chemically under Leuckart-Wallach conditions (formic acid/tertiary amine - , by reduction of sulfur dioxide with l-benzyl-1,4-dihydronicotinamide or with Rongalite The radical anion behaves as an efficient nucleophile and affords the generation of sulfones with alkyl halides " and Michael-acceptor olefins (equations 84 and 85). [Pg.216]

Interesting examples of the addition of N-nucleophiles to nitrile oxides are syntheses of chelated Z-amidoxime, N-[2-(dimethylaminomethyl)phenyl]mesitylene-carboamidoxime (118), and pyranosyl amidoximes (119) from the respective nitrile oxides and amines. Aromatic aldoximes undergo unusual reactions with chloramine-T (4 equiv, in refluxing MeOH). N-(p-toly 1 )-N-(p-tosy 1 )benzamides are formed via addition of 2 equiv of chloramine-T to the intermediate nitrile oxide followed by elimination of sulfur dioxide (120). [Pg.17]

Although acidic pulping methods have largely been displaced over the past 50 years by neutral and alkaline processes, there is still a significant amount carried out. Acid sulfite pulping uses combinations of sulfur dioxide and water at high temperatures and pressures. An appropriate base is used to control the pH and, although usually acidic, it is possible to perform these reactions at neutral or even alkaline pH. The most active nucleophile present is the bisulfite ion,... [Pg.38]

A term, usually referring to a solvent, describing a compound which act neither as a proton donor nor a proton acceptor. Examples of polar aprotic solvents include dimethylformamide, dimethylsulfoxide, acetone, acetonitrile, sulfur dioxide, and hexamethylphosphoramide. Examples of nonpolar aprotic solvents include benzene and carbon tetrachloride. Studies of reactions in protic and aprotic solvents have demonstrated the importance of solvation on reactants, leaving groups, and transition states. Degrees of nucleophilicity as well as acidity are different in aprotic solvents. For example, small, negatively charged nucleophiles react more readily in polar aprotic solvents. It should also be noted that extremely... [Pg.62]

A double nucleophilic substitution reaction on 1,6-dibromohexane with sodium sulfide has been found to give an acceptable yield (59%) of the thiepane (35 equation 62) (81SC409). The reversible 1,6-addition of sulfur dioxide to ds-hexatriene (equation 63) provides a convenient synthetic route to the 2,7-dihydrothiepin 1,1-dioxide (116) (67JA1281). [Pg.585]

Preparation of acid chlorides is one of the easiest methods to activate an acid. Thionyl chloride (SOCh) [12, 13] is used widely to generate acid chlorides. The reaction of SOCb with water or other nucleophiles is extremely exothermic, and generates large quantities of sulfur dioxide and HCI. Nevertheless, acid chlorides (via SOCI2) and mixed anhydrides (via acid chlorides or chloroformates), are the most common reagents used for amide formation in the pharmaceutical industry, with N,N -carbonyldiiniidazole (CDl) growing in popularity[8]. [Pg.294]

Xlld does not involve the chiral center, so if the reaction takes place by this pathway, the migration of the alkyl group from sulfur to palladium (with the concomitant or subsequent loss of sulfur dioxide) must take place with inversion of configuration at carbon. Inversion of configuration at carbon has been observed in the reverse-type reaction, the sulfur dioxide insertion into a carbon-iron sigma bond (49). Nucleophilic displacement at carbon in compounds of type Xld is unusually difficult, so the reaction via the sulfite intermediate Xlld would appear to be more likely. Conversion of the tosylate of l-phenyl-2,2,2-trifluoroethanol to the corresponding chloride, a reaction which takes place in the presence of tetra- (n-butyl) ajnmonium chloride with inversion of configuration at carbon, requires 100°C for 24 hrs in dimethylsulfoxide. [Pg.111]

We may seem to have contradicted ourselves because Equation 10-1 shows a carbocation to be formed in bromine addition, but Equation 10-5 suggests a bromonium ion. Actually, the formulation of intermediates in alkene addition reactions as open ions or as cyclic ions is a controversial matter, even after many years of study. Unfortunately, it is not possible to determine the structure of the intermediate ions by any direct physical method because, under the conditions of the reaction, the ions are so reactive that they form products more rapidly than they can be observed. However, it is possible to generate stable bromonium ions, as well as the corresponding chloronium and iodonium ions. The technique is to use low temperatures in the absence of any strong nucleophiles and to start with a 1,2-dihaloalkane and antimony penta-fluoride in liquid sulfur dioxide ... [Pg.366]


See other pages where Sulfur dioxide nucleophiles is mentioned: [Pg.77]    [Pg.139]    [Pg.152]    [Pg.174]    [Pg.820]    [Pg.887]    [Pg.54]    [Pg.213]    [Pg.104]    [Pg.216]    [Pg.409]    [Pg.422]    [Pg.19]    [Pg.450]    [Pg.409]    [Pg.422]    [Pg.286]    [Pg.4]    [Pg.340]    [Pg.139]    [Pg.152]    [Pg.174]    [Pg.139]    [Pg.152]    [Pg.174]    [Pg.981]    [Pg.474]   
See also in sourсe #XX -- [ Pg.623 , Pg.624 , Pg.625 , Pg.626 , Pg.627 , Pg.628 , Pg.629 , Pg.630 , Pg.631 , Pg.632 ]




SEARCH



Nucleophiles, sulfur

Nucleophilic sulfur

Sulfur nucleophile

© 2024 chempedia.info