Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sulfoxides deprotonation

In sulfoxides and sulfones an adjacent CH group is also deprotonated by strong bases. If one considers the sulfinyl (—SO—) or sulfonyl (—SOj—) groups to be functional groups, then these carbanions are d -synthons. It will be shown later (p. 48f. and 65f.), that these anions may either serve as nonfunctional, d -, d - or d -synthons. [Pg.8]

The large sulfur atom is a preferred reaction site in synthetic intermediates to introduce chirality into a carbon compound. Thermal equilibrations of chiral sulfoxides are slow, and parbanions with lithium or sodium as counterions on a chiral carbon atom adjacent to a sulfoxide group maintain their chirality. The benzylic proton of chiral sulfoxides is removed stereoselectively by strong bases. The largest groups prefer the anti conformation, e.g. phenyl and oxygen in the first example, phenyl and rert-butyl in the second. Deprotonation occurs at the methylene group on the least hindered site adjacent to the unshared electron pair of the sulfur atom (R.R. Fraser, 1972 F. Montanari, 1975). [Pg.8]

A AlI lation. 1-Substitution is favored when the indole ring is deprotonated and the reaction medium promotes the nucleophilicity of the resulting indole anion. Conditions which typically result in A/-alkylation are generation of the sodium salt by sodium amide in Hquid ammonia, use of sodium hydride or a similar strong base in /V, /V- dim ethyl form am i de or dimethyl sulfoxide, or the use of phase-transfer conditions. [Pg.85]

Asymmetric induction by sulfoxide is a very attractive feature. Enantiomerically pure cyclic a-sulfonimidoyl carbanions have been prepared (98S919) through base-catalyzed cyclization of the corresponding tosyloxyalkylsulfoximine 87 to 88 followed by deprotonation with BuLi. The alkylation with Mel or BuBr affords the diastereomerically pure sulfoximine 89, showing that the attack of the electrophile at the anionic C-atom occurs, preferentially, from the side of the sulfoximine O-atom independently from the substituent at Ca-carbon. The reaction of cuprates 90 with cyclic a,p-unsaturated ketones 91 was studied but very low asymmetric induction was observed in 92. [Pg.81]

Besides simple alkyl-substituted sulfoxides, (a-chloroalkyl)sulfoxides have been used as reagents for diastereoselective addition reactions. Thus, a synthesis of enantiomerically pure 2-hydroxy carboxylates is based on the addition of (-)-l-[(l-chlorobutyl)sulfinyl]-4-methyl-benzene (10) to aldehydes433. The sulfoxide, optically pure with respect to the sulfoxide chirality but a mixture of diastereomers with respect to the a-sulfinyl carbon, can be readily deprotonated at — 55 °C. Subsequent addition to aldehydes afforded a mixture of the diastereomers 11A and 11B. Although the diastereoselectivity of the addition reaction is very low, the diastereomers are easily separated by flash chromatography. Thermal elimination of the sulfinyl group in refluxing xylene cleanly afforded the vinyl chlorides 12 A/12B in high chemical yield as a mixture of E- and Z-isomers. After ozonolysis in ethanol, followed by reductive workup, enantiomerically pure ethyl a-hydroxycarboxylates were obtained. [Pg.138]

Although a,/J-unsaturated sulfoxides are easily prepared (see Section D.1.1.1.5.), they arc usually obtained as a mixture of E- and Z-isomers11 both of which may be deprotonated by... [Pg.650]

The optimum conditions for obtaining a high diastereoselectivity are as follows Deprotonation of the sulfoxide must be carried out at 0 C with lithium diisopropyl amide (1 equiv). a lower temperature probably changes the organization of the lithium species and gives lower diastereoselectivity. The condensation reaction is very fast at —78 C, reaction time is usually around 10 minutes3. [Pg.771]

The reaction was carried out analogously to the general procedure for the addition of metalated ally 1 sulfoxides given in Section 1.5.2.2.3.2. BuL.i is used, in this case, for deprotonation instead of LDA. BuLi is added to a solution of 1 - 3 mmol of the phosphine oxide or phosphonate in THF until the first permanent appearance of the red color of the anion. Thereupon, 1.1 equivalents of the BuLi is added. For the phosphonates, whose anions are less intensely colored, 1.1 equivalents of BuLi are added to the solutions after the first permanent appearance of the red color of an added indicator, 2.2 -bipyridyl. [Pg.918]

In a conceptually similar fashion, camphor-derived hydroxysulfide 9 is oxidized diastereospecifically into hydroxysulfoxide 10 whose absolute configuration has been determined by X-ray crystallography48. Heating this diastereomer to 145 °C causes complete epimerization at sulfur to form diastereomer 11 in quantitative yield (equation 12). This type of allylic sulfoxide can be deprotonated and then added in a Michael fashion to cycloalkenones (see p. 834). [Pg.829]

Kinetic deprotonation of 1-alkenyl sulfoxides produces the corresponding a-lithiosulfmyl carbanions59 which have been deuterated, alkylated, acylated (e.g., equation 19)60 and carboxylated. [Pg.832]

Deprotonation and then reprotonation of enantiomerically pure 1-alkenyl sulfoxide ( )-( +)-23 produces no double bond isomerization and no racemization, whereas similar treatment of (Z)-( —)-23 causes complete double bond isomerization and some racemization (equations 20 and 21)59d. [Pg.832]

When enantiomerically pure allyl p-tolyl sulfoxide is deprotonated and then treated with electrophilic 2-cyclopentenone, a conjugate addition occurs forming a new carbon-carbon bond with very high control of absolute stereochemistry (equation 25)65. See also Reference 48. Similarly, using more substituted enantiomerically pure allylic sulfoxides leads to virtually complete diastereocontrol, as exemplified by equations 26 and 27 the double bond geometry in the initial allylic sulfoxide governs the stereochemistry at the newly allylic carbon atom (compare equations 26 vs. 27)66. Haynes and associates67 rationalize this stereochemical result in terms of frontier molecular orbital considerations... [Pg.834]

Introduction of the phenylthio group onto the 5-carbon atom of alcohols can have valuable synthetic applications. 5-Phenylthio alcohols can be oxidized to the corresponding 5-sulfoxides and sulfones (with their versatile reactivities) or they can be deprotonated by strong base converting the 5-carbon atom to a nucleophilic species. Conversion of 5-phenylthio alcohols to the corresponding 5-carbonyl compounds can be achieved via halogenation followed by subsequent hydrolysis. In this way an inversion of the reactivity of the 5-carbon atom may be accomplished and it can react as an electron acceptor. [Pg.131]

Addition of such a-lithiosulfinyl carbanions to aldehydes could proceed with asymmetric induction at the newly formed carbinol functionality. One study of this process, including variation of solvent, reaction temperature, base used for deprotonation, structure of aldehyde, and various metal salts additives (e.g., MgBrj, AlMej, ZnClj, Cul), has shown only about 20-25% asymmetric induction (equation 22) . Another study, however, has been much more successful Solladie and Moine obtain the highly diastereocontrolled aldol-type condensation as shown in equation 23, in which dias-tereomer 24 is the only observed product, isolated in 75% yield This intermediate is then transformed stereospecifically via a sulfoxide-assisted intramolecular 8, 2 process into formylchromene 25, which is a valuable chiron precursor to enantiomerically pure a-Tocopherol (Vitamin E, 26). [Pg.833]

Deprotonation of allylic aryl sulfoxides leads to allylic carbanions which react with aldehyde electrophiles at the carbon atom a and also y to sulfur . With benzaldehyde at — 10 °C y-alkylation predominates , whereas with aliphatic aldehydes at — 78 °C in the presence of HMPA a-alkylation predominates . When the a-alkylated products, which themselves are allylic sulfoxides, undergo 2,3-sigmatropic rearrangement, the rearranged compounds (i.e., allylic sulfenate esters) can be trapped with thiophiles to produce overall ( )-l,4-dihydroxyalkenes (equation 24). When a-substituted aldehydes are used as electrophiles, formation of syn-diols 27 occurs in 40-67% yields with diastereoselectivities ranging from 2-28 1 (equation 24) . ... [Pg.834]

Alkyltriphenylphosphonium halides are only weakly acidic, and a strong base must be used for deprotonation. Possibilities include organolithium reagents, the anion of dimethyl sulfoxide, and amide ion or substituted amide anions, such as LDA or NaHMDS. The ylides are not normally isolated, so the reaction is carried out either with the carbonyl compound present or with it added immediately after ylide formation. Ylides with nonpolar substituents, e.g., R = H, alkyl, aryl, are quite reactive toward both ketones and aldehydes. Ylides having an a-EWG substituent, such as alkoxycarbonyl or acyl, are less reactive and are called stabilized ylides. [Pg.159]

Cutting and Parsons described the transformation of acetylenic alcohols 314 into allenyl phenyl thioethers 316 by a two-step procedure (Scheme 8.85) [174], Deprotonation of alkynes 314 with n-butyllithium is followed by addition of phenylsulfenyl chloride, forming sulfenyloxy intermediates which subsequently rearrange to allenic sulfoxides 315. Treatment of allenes 315 with methyllithium results in loss of the sulfoxide moiety to form allenyl sulfides 316 in reasonable yields. [Pg.478]

Metalated vinyl ethers are configurational stable up to —20°C in tetrahydrofuran. H-NMR measurements of 1-ethoxy-1-lithioethene TMEDA did not show any coalescence of the signals for the vinyl protons until the onset of decomposition. Thus, there is no evidence of inversion in this case . Similar configurational stability is displayed by a-lithiated thioethers in tetrahydrofuran no inversion occurs up to 0°C. On the contrary, deprotonated vinyl sulfoxides and sulfones are configurationally less stable . ... [Pg.837]

As indicated in Section ni.B, deprotonation of a carbamate affords a dipole-stabilized a-amino-organolithium that can be transmetalated with copper salts to form cuprates, thereby expanding the versatility of the organolithium. Suitable electrophiles include enones, alkenyl, alkynyl, allenyl and dienyl carboxylic acid derivatives, nitriles and sulfoxides. Dieter and coworkers have shown that the same process can be accomplished via transmetalation of a stannane (Scheme 36). The procedure is particularly... [Pg.1025]

The oxidation of sulfides to sulfoxides (1 eq. of oxidant) and sulfones (2 eq. of oxidant) is possible in the absence of a catalyst by employing the perhydrate prepared from hexafluoroacetone or 2-hydroperoxy-l,l,l-trifluoropropan-2-ol as reported by Ganeshpure and Adam (Scheme 99 f°. The reaction is highly chemoselective and sulfoxidation occurs in the presence of double bonds and amine functions, which were not oxidized. With one equivalent of the a-hydroxyhydroperoxide, diphenyl sulfide was selectively transformed to the sulfoxide in quantitative yield and with two equivalents of oxidant the corresponding sulfone was quantitatively obtained. 2-Hydroperoxy-l,l,l-fluoropropan-2-ol as an electrophilic oxidant oxidizes thianthrene-5-oxide almost exclusively to the corresponding cw-disulfoxide, although low conversions were observed (15%) (Scheme 99). Deprotonation of this oxidant with sodium carbonate in methanol leads to a peroxo anion, which is a nucleophilic oxidant and oxidizes thianthrene-5-oxide preferentially to the sulfone. [Pg.472]


See other pages where Sulfoxides deprotonation is mentioned: [Pg.150]    [Pg.140]    [Pg.330]    [Pg.134]    [Pg.189]    [Pg.183]    [Pg.831]    [Pg.833]    [Pg.834]    [Pg.216]    [Pg.831]    [Pg.627]    [Pg.71]    [Pg.101]    [Pg.97]    [Pg.434]    [Pg.32]    [Pg.240]    [Pg.98]    [Pg.311]    [Pg.3]    [Pg.220]    [Pg.439]    [Pg.144]   
See also in sourсe #XX -- [ Pg.177 , Pg.178 ]




SEARCH



Methyl sulfoxide, caution as solvent in deprotonations

© 2024 chempedia.info