Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zwitterionic oxidation intermediate

It was shown that complexes 19 of the zwitterionic precursors of ortho-quinone methides and a bis(sulfonium ylide) derived from 2,5-di hydroxyl 1,4 benzoquinone46 were even more stable than those with amine N-oxides. The bis(sulfonium ylide) complexes were formed in a strict 2 1 ratio (o-QM/ylide) and were unaltered at —78 °C for 10 h and stable at room temperature under inert conditions for as long as 15—30 min (Fig. 6.18).47 The o-QM precursor was produced from a-tocopherol (1), its truncated model compound (la), or a respective ortho-methylphenol in general by Ag20 oxidation in a solution containing 0.50-0.55 equivalents of bis(sulfonium ylide) at —78 °C. Although the species interacting with the ylide was actually the zwitterionic oxidation intermediate 3a and not the o-QM itself, the term stabilized o-QM was introduced for the complexes, since these reacted similar to the o-QMs themselves but in a well defined way without dimerization reactions. [Pg.181]

A zwitterionic, heterocyclic intermediate was found in the dimerization of propanethial 5-oxide (80JA2490). [Pg.38]

Mechanistic studies have been the subject of a great deal of recent work." Although at one time the Wittig reaction was thought to occur through the formation of zwitterionic betaine intermediates (100) and (101), the reaction of a nonstabilized triphenylphosphorus ylide (99) with an aldehyde forms observable (by NMR) 1,2-oxaphosphetanes (104) and (105), which eliminate to produce the alkene (102) and phosphine oxide (103) (Scheme 21). "... [Pg.755]

The appearance of the second molecule of aldehyde is attributed to a mode of stabilization of the zwitterion (1) intermediate by reaction with the pyridine to form pyridine oxide and a second molecule of aldehyde ... [Pg.166]

It is well known that a zwitterionic enolate intermediate can be generated via the addition of a Lewis base to ketenes, which can be oxidized by an appropriate oxaziridine to form the corresponding imine and zwitterionic epoxide. The obtained zwitterionic epoxide intermediate is expected to add to the in situ generated imine to furnish the final products. Based on this finding. Ye reported a novel enantioselective formal [3 + 2] cycloaddition of ketene 40 to racemic oxaziridine 41 for the synthesis of oxazolin-4-one. By using NHC 43 or 44 as the Lewis base catalyst [23], the product 42 could be obtained in good yield with high diastereo and enantioselectivity (Scheme 2.12). [Pg.18]

The rearrangement (automerization) of Dewar thiophene 5-oxide (61), observed by NMR, occurs so much more rapidly than that of the corresponding episulfide that special mechanisms have been invoked. The one which involves a zwitterionic intermediate (Scheme 108) is favored over a pseudopericyclic sulfur-walk mechanism in which the electrons of the carbon-sulfur o--bond and the pair of electrons on sulfur exchange places as the sulfur atom migrates around the ring (80JA2861). [Pg.169]

The mechanism for the redistribution in oxidation states begins similarly to that of the Paal thiophene synthesis. However, upon formation of dithione 38, nucleophilic addition of one thiocarbonyl into the other produces the intermediate zwitterion 39. A 1,3-tautomerization of hydrogen then gives... [Pg.214]

Photochemical synthesis of sulphoxides was reported for the first time by Foote and Peters111 in 1971. They found that dialkyl sulphides undergo smoothly dye-photosensitized oxidation to give sulphoxides (equation 32). This oxidation reaction has been postulated to proceed through an intermediate adduct 63, which could be a zwitterionic peroxide, a diradical or cyclic peroxide, which then reacts with a second molecule of sulphide to give the sulphoxide (equation 33). [Pg.251]

Stabilised sulphur ylides react with alkenylcarbene complexes to form a mixture of different products depending on the reaction conditions. However, at -40 °C the reaction results in the formation of almost equimolecular amounts of vinyl ethers and diastereomeric cyclopropane derivatives. These cyclopropane products are derived from a formal [2C+1S] cycloaddition reaction and the mechanism that explains its formation implies an initial 1,4-addition to form a zwitterionic intermediate followed by cyclisation. Oxidation of the formed complex renders the final products [30] (Scheme 8). [Pg.68]

Although this mechanism could explain the inertness of di-t-butyl sulphide towards oxidation due to the absence of a-hydrogen atoms, it was later ruled out by Tezuka and coworkers They found that diphenyl sulphoxide was also formed when diphenyl sulphide was photolyzed in the presence of oxygen in methylene chloride or in benzene as a solvent. This implies that a-hydrogen is not necessary for the formation of the sulphoxide. It was proposed that a possible reactive intermediate arising from the excited complex 64 would be either a singlet oxygen, a pair of superoxide anion radical and the cation radical of sulphide 68 or zwitterionic and/or biradical species such as 69 or 70 (equation 35). [Pg.252]

FIGURE 6.18 Oxidation of ortAo-methylphenols to the corresponding ortho-quinone methide via transient zwitterionic intermediates that are stabilized by forming a complex 19 with the 2,5-dihydroxy[l,4]benzoquinone-derived bis(sulfonium ylide). [Pg.182]

The reactions and compound presented in this chapter support the notion that the formation of o-QMs from the parent phenols is a quite complex process. In the case of the oxidation by Ag20 but also likely in other oxidations, a zwitterionic intermediate is involved that can be stabilized intermolecularly, for example, by electrostatic interaction with other suitable zwitterions, or intramolecularly by neighboring groups or inductive/mesomeric effects. By stabilizing the zwitterionic intermediate and destabilizing the o-QM, the energetic gap between these two intermediates is lowered and... [Pg.186]

Reactions of 1 with epoxides involve some cycloaddition products, and thus will be treated here. Such reactions are quite complicated and have been studied in some depth.84,92 With cyclohexene oxide, 1 yields the disilaoxirane 48, cyclohexene, and the silyl enol ether 56 (Eq. 29). With ( )- and (Z)-stilbene oxides (Eq. 30) the products include 48, ( > and (Z)-stilbenes, the E- and Z-isomers of silyl enol ether 57, and only one (trans) stereoisomer of the five-membered ring compound 58. The products have been rationalized in terms of the mechanism detailed in Scheme 14, involving a ring-opened zwitterionic intermediate, allowing for carbon-carbon bond rotation and the observed stereochemistry. [Pg.262]

Electrocyclization of 1,4-dienes is an efficient process when a heteroatom with a lone pair of electrons is placed in the 3-position, as in 77 (Scheme 20)38. Photoexcitation of these systems generally results in efficient formation of a C—C bond via 6e conrotatory cyclization to afford the ylide 78. These reactive intermediates can undergo a variety of processes, including H-transfer (via a suprafacial 1,4-H transfer) to 79 or oxidation to 80. In a spectacular example of reaction, and the potential it holds for complex molecule synthesis, Dittami and coworkers found that the zwitterion formed by photolysis of divinyl ether 81 could be efficiently trapped in an intramolecular [3 + 2] cycloaddition by the... [Pg.279]

Addition of ammonia as a model nucleophile to nitrile oxides was studied by a semiempirical MNDO method, for fulminic acid and acetonitrile oxide (121). The reaction is exothermic and proceeds in two steps. The first (and rate-determining) step is the formation of a zwitterionic structure as intermediate. The second step, which involves transfer of a proton, is very fast and leads to the formation of Z-amidoximes in accordance with experimental data. Similar results were... [Pg.17]


See other pages where Zwitterionic oxidation intermediate is mentioned: [Pg.179]    [Pg.179]    [Pg.340]    [Pg.249]    [Pg.113]    [Pg.249]    [Pg.201]    [Pg.608]    [Pg.356]    [Pg.932]    [Pg.151]    [Pg.236]    [Pg.152]    [Pg.252]    [Pg.1523]    [Pg.195]    [Pg.13]    [Pg.178]    [Pg.183]    [Pg.184]    [Pg.186]    [Pg.205]    [Pg.36]    [Pg.233]    [Pg.304]    [Pg.514]    [Pg.406]    [Pg.591]    [Pg.50]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Intermediate oxides

Intermediates zwitterions

Oxidation intermediate

Oxidized intermediates

Zwitterion

Zwitterion intermediates

Zwitterionic intermediate

Zwitterionics

Zwitterions

© 2024 chempedia.info