Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Succinate synthetase

Fig. 6.11. The (Krebs-Henseleit) ornithine cycle. Numbers refer to enzymes as follows. (1) Carbamyl phosphate synthetase (E.C.2.7.2.a). (2) Ornithine transcarbamylase (E.C.2.1.3.3). (3) Arginino-succinate synthetase (E.C.6.3.4.5). (4) Arginino-succinate lyase (E.C.4.3.2.1). (5) Arginase (E.C.3.5.3.1). (After Smyth, 1969.)... Fig. 6.11. The (Krebs-Henseleit) ornithine cycle. Numbers refer to enzymes as follows. (1) Carbamyl phosphate synthetase (E.C.2.7.2.a). (2) Ornithine transcarbamylase (E.C.2.1.3.3). (3) Arginino-succinate synthetase (E.C.6.3.4.5). (4) Arginino-succinate lyase (E.C.4.3.2.1). (5) Arginase (E.C.3.5.3.1). (After Smyth, 1969.)...
Covalent immobilization of enzymes increases their stability while lowering their activity. Also, their storage stability is notably higher. The synthesis of arginine from citrulline, ATP and argenino-succinate synthetase may involve a carbodiimide intermediate. ... [Pg.264]

In the cytosol, citrulline reacts with aspartate, the second source of nitrogen for urea synthesis, to produce argininosuccinate (see Fig. 38.12). This reaction, catalyzed by arginino succinate synthetase, is driven by the hydrolysis of ATP to adenosine monophosphate (AMP) and pyrophosphate. Aspartate is produced by transamination of oxaloacetate. [Pg.704]

Citrullinemia is a human disease caused by a deficiency of liver arginino-succinate synthetase. It is inherited as an autosomal recessive. A fibroblast cell line from the skin of an infant with citrullinemia could not ultilize citrulline (instead of arginine) in the medium, while control normal fibroblast could (Tedesco and Mellman, 1967). For mutational studies, it may be possible either to use selective medium in which arginine is replaced with citrulline or to apply radioactive citrulline in an autoradiographic assay. [Pg.128]

Lsocitrate Dehydrogenase—The First Oxidadon in die Cycle m-Ketoglutarate Dehydrogenase—A Second Decarboxylation Succinyl-CoA Synthetase—A Substrate-Level Phosphoryladon Succinate Dehydrogenase—An Oxidadon Involving FAD... [Pg.639]

The mechanism of succinyl-CoA synthetase is postulated to involve displacement of CoA by phosphate, forming succinyl phosphate at the active site, followed by transfer of the phosphoryl group to an active-site histidine (making a phosphohistidine intermediate) and release of succinate. The phosphoryl moiety is then transferred to GDP to form GTP (Figure 20.13). This sequence of steps preserves the energy of the thioester bond of succinyl-CoA in a series of high-energy intermediates that lead to a molecule of ATP ... [Pg.653]

Enzymes a) citrate synthase b) aconitase c) isocitrate dehydrogenase d) a-oxoglutarate dehydrogenase e) succiny CoA synthetase f) succinate dehydrogenase g) fumarase h) malate dehydrogenase i) nucleoside diphosphokinase. [Pg.123]

Succinyl-CoA is converted to succinate by the enzyme succinate thiokinase (succinyl-CoA synthetase). This is the only example in the citric acid cycle of substrate-level phosphorylation. Tissues in which glu-coneogenesis occurs (the hver and kidney) contain two isoenzymes of succinate thiokinase, one specific for GDP and the other for ADP. The GTP formed is used for the decarboxylation of oxaloacetate to phos-phoenolpymvate in gluconeogenesis and provides a regulatory hnk between citric acid cycle activity and the withdrawal of oxaloacetate for gluconeogenesis. Nongluconeogenic tissues have only the isoenzyme that uses ADP. [Pg.131]

A comprehensive study of KDO 8-phosphate synthetase has been reported by Ray.137 The author purified the enzyme 450-fold from crude extracts of Escherichia coli B cells. The synthetase has a molecular mass of 90,000 6,000 daltons and is composed of three identical subunits having an apparent molecular mass of32,000 4,000 daltons. Two pH optima were observed, one being at pH 4.0-6.0 in succinate buffer, and the other, at pH 9.0 in glycine buffer. The isoelectric point of the enzyme is 5.1. The enzyme has an apparent KM for D-arabinose 5-phosphate of 20 pM and an apparent KM for enolpyruvate phosphate of 6 pM. [Pg.380]

Succinyl CoA synthetase (succinate thiokinase) catalyzes a substrate-level phosphorylation of GDP to GTP. [Pg.179]

Figure 9.2 Summary of reactions of the Krebs cycle. The names of the enzymes are dtrate synthase, aconitase, isodtrate dehydrogenase (there are two enzymes, one ubTizes NAD as the cofactor, the other NADPT it is assumed that the NAD -specific enzyme is that involved in the cycle), oxoglutarate dehydrogenase, sucdnyl CoA synthetase, succinate dehydrogenase, fumarate hydratase, malate dehydrogenase. Figure 9.2 Summary of reactions of the Krebs cycle. The names of the enzymes are dtrate synthase, aconitase, isodtrate dehydrogenase (there are two enzymes, one ubTizes NAD as the cofactor, the other NADPT it is assumed that the NAD -specific enzyme is that involved in the cycle), oxoglutarate dehydrogenase, sucdnyl CoA synthetase, succinate dehydrogenase, fumarate hydratase, malate dehydrogenase.
The subsequent cleavage of the thio-ester succinylCoA into succinate and coenzyme A by succinic acid-CoA ligase (succinyl CoA synthetase, succinic thiokinase) is strongly exergonic and is used to synthesize a phosphoric acid anhydride bond ( substrate level phosphorylation , see p. 124). However, it is not ATP that is produced here as is otherwise usually the case, but instead guanosine triphosphate (CTP). However, GTP can be converted into ATP by a nucleoside diphosphate kinase (not shown). [Pg.136]

Succinyl-CoA synthetase (GDP) [EC 6.2.1.4], also known as succinate CoA ligase, catalyzes the reversible reaction of GTP with succinate and coenzyme A to produce GDP, succinyl-CoA, and orthophosphate. The nucleotide substrate can be replaced with ITP and itaconate can substitute for succinate. [Pg.665]

Succinyl-CoA synthetase (SCS), also known as succinate thiokinase (STK) or succinate CoA ligase ( 6.2.1.4-5), is so far the only known hydrogenosomal enzyme directly involved in energy conservation. The protein catalyzes the reversible, substrate-level phosphorylation of ADP or GDP to the respective triphosphate at the expense of the high-energy thioester bond of succinyl-CoA. Succinate and CoA are released in the reaction. The I vaginalis enzyme... [Pg.126]

The enzyme that catalyzes this reversible reaction is called succinyl-CoA synthetase or succinic thioki-... [Pg.611]

Balance Sheet for the Citric Acid Cycle The citric acid cycle has eight enzymes citrate synthase, aconitase, isocitrate dehydrogenase, a-ketoglutarate dehydrogenase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase, and malate dehydrogenase. [Pg.627]

Succinate thiokinase (also called succinyl CoA synthetase) cleaves the high-energy thioester bond of succinyl CoA (see Figure 9.6). This reaction is coupled to phosphorylation of GDP to GTP. GTP and ATP are energetically interconvertible by the nucleoside diphos phate kinase reaction ... [Pg.110]

Succinyl CoA is cleaved by succinate thiokinase (also called succinyl CoA synthetase), producing succinate and ATP (or GTP). This is an example of substrate-level phosphory lation. Succinate is oxidized to fumarate by succinate dehydrogenase, producing FADH2. The enzyme is inhibited by oxaloacetate. Fumarate is hydrated to malate by fumarase (fumarate hydratase), and malate is oxidized to oxaloacetate by malate dehy drogenase, producing NADH. [Pg.478]

Conversion of succinyl CoA to succinate [catalyzed by succinyl CoA synthetase the reaction requires inorganic phosphate and GDP (or ADP)]. [Pg.343]

Succinyl CoA is converted to succinate (4C) by succinyl CoA synthetase. The reaction uses the energy released by cleavage of the succinyl-CoA bond to synthesize either GTP (mainly in animals) or ATP (exclusively in plants) from P and, respectively, GDP or ADP. [Pg.344]

Although numerous enzymatic reactions requiring vitamin B12 have been described, and 10 reactions for adenosylcobalamin alone have been identified, only three pathways in man have so far been recognized, one of which has only recently been identified (PI). Two of these require the vitamin in the adenosyl form and the other in the methyl form. These cobalamin coenzymes are formed by a complex reaction sequence which results in the formation of a covalent carbon-cobalt bond between the cobalt nucleus of the vitamin and the methyl or 5 -deoxy-5 -adenosyl ligand, with resulting coenzyme specificity. Adenosylcobalamin is required in the conversion of methylmalonate to succinate (Fig. 2), while methylcobalamin is required by a B12-dependent methionine synthetase that enables the methyl group to be transferred from 5-methyltetrahydrofolate to homocysteine to form methionine (Fig. 3). [Pg.166]


See other pages where Succinate synthetase is mentioned: [Pg.109]    [Pg.109]    [Pg.648]    [Pg.652]    [Pg.1157]    [Pg.548]    [Pg.549]    [Pg.371]    [Pg.179]    [Pg.121]    [Pg.93]    [Pg.212]    [Pg.103]    [Pg.117]    [Pg.119]    [Pg.260]    [Pg.262]    [Pg.613]    [Pg.112]    [Pg.989]    [Pg.392]    [Pg.7]   


SEARCH



Succinyl-CoA synthetase (succinate

© 2024 chempedia.info