Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substrates binding order

INFLUENCE OF OTHER STEPS ON THE MAGNITUDE OF OBSERVED ISOTOPE EFFECTS. As noted earlier, nonenzymatic reaction mechanisms do not involve those complexities imposed by substrate binding order, rates of substrate binding/release, as well as conformational changes that attend enzyme catalysis. As a result, the opportunity for detecting isotope effects is... [Pg.404]

HG Vinnicombe, JP Derrick. Dihydropteroate synthase from Streptococcus pneumoniae. characterization of substrate binding order and sulfonamide inhibition. Bio-chem Biophys Res Commun 258 752-757, 1999. [Pg.259]

Overview of other bimolecular mechanisms The random bi-uni mechanism (random bi-substrate binding order with single product) has the form ... [Pg.95]

The dependence of on the fixed substrate s concentration can be used as an indicator of substrate-binding order. A fixed substrate s concentration dependence of is associated with the second substrate to bind to the enzyme. A fixed substrate s concentration independence of is associated with the first substrate to bind to the enzyme. [Pg.97]

Fromm, H. J., 1979. Use of competitive inhibitors to study substrate binding order. Methods. Enzymol. 63 467-486. [Pg.218]

Left side of Fig. 4 shows a ribbon model of the catalytic (C-) subunit of the mammalian cAMP-dependent protein kinase. This was the first protein kinase whose structure was determined [35]. Figure 4 includes also a ribbon model of the peptide substrate, and ATP (stick representation) with two manganese ions (CPK representation). All kinetic evidence is consistent with a preferred ordered mechanism of catalysis with ATP binding proceeding substrate binding. [Pg.190]

Shimidzu etal.111 studied the catalytic activity of poly (4(5)-vinylimidazole-co-acrylic add) 60 (PVIm AA) in hydrolyses of 3-acetoxy-N-trimethylanilinium iodide 61 (ANTI) and p-nitrophenylacetate 44 (PNPA). The hydrolyses of ANTI followed the Michaelis-Menten-type kinetics, and that of PNPA followed the second-order kinetics. Substrate-binding with the copolymer was strongest at an imidazole content of 30 mol%. The authors concluded that the carboxylic acid moiety not... [Pg.162]

A second ternary complex reaction mechanism is one in which there is a compulsory order to the substrate binding sequence. Reactions that conform to this mechanism are referred to as bi-bi compulsory ordered ternary complex reactions (Figure 2.13). In this type of mechanism, productive catalysis only occurs when the second substrate binds subsequent to the first substrate. In many cases, the second substrate has very low affinity for the free enzyme, and significantly greater affinity for the binary complex between the enzyme and the first substrate. Thus, for all practical purposes, the second substrate cannot bind to the enzyme unless the first substrate is already bound. In other cases, the second substrate can bind to the free enzyme, but this binding event leads to a nonproductive binary complex that does not participate in catalysis. The formation of such a nonproductive binary complex would deplete the population of free enzyme available to participate in catalysis, and would thus be inhibitory (one example of a phenomenon known as substrate inhibition see Copeland, 2000, for further details). When substrate-inhibition is not significant, the overall steady state velocity equation for a mechanism of this type, in which AX binds prior to B, is given by Equation (2.16) ... [Pg.44]

A steady-state kinetics study for Hod was pursued to establish the substrate binding pattern and product release, using lH-3-hydroxy-4-oxoquinoline as aromatic substrate. The reaction proceeds via a ternary complex, by an ordered-bi-bi-mechanism, in which the first to bind is the aromatic substrate then the 02 molecule, and the first to leave the enzyme-product complex is CO [359], Another related finding concerns that substrate anaerobically bound to the enzyme Qdo can easily be washed off by ultra-filtration [360] and so, the formation of a covalent acyl-enzyme intermediate seems unlikely in the... [Pg.169]

The third group of studies involves attachment of the iron complexes to solid substrates in order to inhibit formation of bridged species. In a very early study, dioxygen was found to bind reversibly to haem diethyl ester embedded in a mixture of polystyrene and l-(2-phenylethyl)imidazole (Wang, 1958). [Pg.240]

Sometimes the binding site for one substrate does not exist until the other substrate binds to the enzyme. This creates a specific binding order in which A must bind before B can bind (or vice versa). [Pg.122]

Binding of anions, cations, and organic substrates. In order to probe the roles of the different types of copper atoms and the nature of the electron transfer pathways between them, a variety of complexes of hCP with inhibitors of oxidase activity and... [Pg.84]

This hypothesis is satisfactory for nucleophilic reactions of cyanide and bromide ion in cationic micelles (Bunton et al., 1980a Bunton and Romsted, 1982) and of the hydronium ion in anionic micelles (Bunton et al., 1979). As predicted, the overall rate constant follows the uptake of the organic substrate and becomes constant once all the substrate is fully bound. Addition of the ionic reagent also has little effect upon the overall reaction rate, again as predicted. Under these conditions of complete substrate binding the first-order rate constant is given by (8), and, where comparisons have been made for reaction in a reactive-ion micelle and in solutions... [Pg.237]

Kanner, B. I. and Bendahan, A. (1982) Binding order of substrates to the sodium and potassium ion coupled L-glutamic acid transporter from rat brain. Biochemistry 21,6327-6330. [Pg.156]

Figure 8. The most common enzyme mechanisms, represented by their corresponding Cleland plots The order in which substrates and products bind and dissociate from the enzyme is indicated by arrows, (a) The Random Bi Bi Mechanism-. Both substrates bind in random order, (b) The Ordered Sequential Bi Bi Mechanism-. The substrates bind sequentially, (c) The Ping Pong Mechanism-. The enzyme exists in different states E and E. A substrate may transfer a chemical group to the enzyme. Only upon release of the first substrate, the chemical group is transferred to the second substrate. Figure 8. The most common enzyme mechanisms, represented by their corresponding Cleland plots The order in which substrates and products bind and dissociate from the enzyme is indicated by arrows, (a) The Random Bi Bi Mechanism-. Both substrates bind in random order, (b) The Ordered Sequential Bi Bi Mechanism-. The substrates bind sequentially, (c) The Ping Pong Mechanism-. The enzyme exists in different states E and E. A substrate may transfer a chemical group to the enzyme. Only upon release of the first substrate, the chemical group is transferred to the second substrate.
Fig. 2. An example of a complex multidomain protein that includes both domain concatenation and intercalation. (A) See color insert. RASMOL view of phosphotransferase pyruvate kinase (pdb entry lpkn) colored to show the three identifiable domains. Blue is the j3 barrel regulatory domain, orange is an eightfold a/fi barrel, the catalytic substrate binding domain, and green is a central /3, a/(B nucleotide binding domain. Not displayed is the leader subsequence composed of a random coil and short helix. (B) Linear order along the sequence of these components. Fig. 2. An example of a complex multidomain protein that includes both domain concatenation and intercalation. (A) See color insert. RASMOL view of phosphotransferase pyruvate kinase (pdb entry lpkn) colored to show the three identifiable domains. Blue is the j3 barrel regulatory domain, orange is an eightfold a/fi barrel, the catalytic substrate binding domain, and green is a central /3, a/(B nucleotide binding domain. Not displayed is the leader subsequence composed of a random coil and short helix. (B) Linear order along the sequence of these components.
Thus far only reactions involving a single substrate have been considered. Most enzymatic reactions have two substrates. Unlike chemical processes, the sequence in which the substrates bind to the enzyme may be important. If two substrates, A and B, bind in a specific order (e.g., A binds first) as illustrated in Equation 11.37 the mechanism is called ordered sequential. [Pg.352]


See other pages where Substrates binding order is mentioned: [Pg.160]    [Pg.356]    [Pg.370]    [Pg.160]    [Pg.356]    [Pg.370]    [Pg.203]    [Pg.461]    [Pg.469]    [Pg.32]    [Pg.1009]    [Pg.205]    [Pg.351]    [Pg.233]    [Pg.152]    [Pg.299]    [Pg.303]    [Pg.305]    [Pg.192]    [Pg.77]    [Pg.43]    [Pg.485]    [Pg.37]    [Pg.170]    [Pg.22]    [Pg.159]    [Pg.322]    [Pg.324]    [Pg.46]    [Pg.1223]    [Pg.151]    [Pg.257]    [Pg.349]    [Pg.318]    [Pg.69]    [Pg.271]   
See also in sourсe #XX -- [ Pg.97 ]




SEARCH



Binding ordered

Ordering substrates

Substrate binding

© 2024 chempedia.info