Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution tandem reactions

Tandem reaction of aromatic aldehydes with electron-deficient acetylenes and dialkyl acetylenedicarboxylates in the presence of I it iN led to the formation of fully substituted furans in moderate yields. One appropriate example is shown below <06EJOC5174>. [Pg.188]

Raja and Perumal reported the synthesis of novel 2,6-diaryl-3-(arylthio)piperidin-4-ones via a four-component reaction consisting of arylthioacetones, 2-substituted aromatic aldehydes and methylamine or ammonium acetate <06CPB795>. Further elaboration of this four component reaction to a novel five component tandem Mannich-enamine-substitution sequence involving the reaction of ethyl 2-[(2-oxopropyl)sulfanyl]acetate, two equivalents of a substituted aromatic aldehyde, and two equivalents of ammonium acetate is shown below <06T4892>. When this five-component tandem reaction involves para-substituted benzaldehydes, the cis (193) and trans (194) diastereomers of thiazones are obtained. Alternatively, orf/zo-substituted benzaldehydes form only the trans (194) diastereomer along with an air-oxidized product 195. [Pg.341]

Another type of Cinchona alkaloid catalyzed reactions that employs azodicarbo-xylates includes enantioselective allylic amination. Jprgensen [51-53] investigated the enantioselective electrophilic addition to aUyhc C-H bonds activated by a chiral Brpnsted base. Using Cinchona alkaloids, the first enantioselective, metal-free aUyhc amination was reported using alkylidene cyanoacetates with dialkyl azodi-carboxylates (Scheme 12). The product was further functionalized and used in subsequent tandem reactions to generate useful chiral building blocks (52, 53). Subsequent work was applied to other types of allylic nitriles in the addition to a,P-unsaturated aldehydes and P-substituted nitro-olefins (Scheme 13). [Pg.156]

The Lee group originated rhodium alkenylidene-mediated catalysis by combining acetylide/alkenylidene interconversion with known metal vinylidene functionalization reactions [31], Thus, the first all-intramolecular three-component coupling between alkyl iodides, alkynes, and olefins was realized (Scheme 9.17). Prior to their work, such tandem reaction sequences required several distinct chemical operations. The optimized reaction conditions are identical to those of their original two-component cycloisomerization of enynes (see Section 9.2.2, Equation 9.1) except for the addition of an external base (Et3N). Various substituted [4.3.0]-bicyclononene derivatives were synthesized under mild conditions. Oxacycles and azacycles were also formed. The use of DMF as a solvent proved essential reactions in THF afforded only enyne cycloisomerization products, leaving the alkyl iodide moiety intact. [Pg.300]

There is no easy and/or effective method for the preparation of 1,2,3,4-tetrasubstituted naphthalenes starting from a simple naphthalene derivative and based on classical substitution methodology. A clever new route, based on the now common concept of "tandem" reactions, is illustrated as follows. Heating of the sulfoxide 1 with acetic anhydride at 120°C in the presence of maleic anhydride gave an adduct 2, C20H16O4S, in 87% yield as a mixture of diastereomers. Reaction of the adduct 2 with PTSA in THF at 25°C gave the naphthalene derivative 3 in quantitative yield. Use of methyl propiolate in place of maleic anhydride did not result in isolation of an adduct the product was the tetralone 4 (51%). [Pg.1]

When the reaction is performed at 0°C, the azide 46 is isolated in high yield with no accompanying oxatriazoline 23, whereas a mixture of products 23 and 46 is obtained at room temperature. Similarly, the A2-l,2,3,4-oxatriazoline derivative 24 is obtained in high yield from 4-bromoA-ructhyIvaleraldchydc (Equation 8). When other aldehydes or ketones are employed, only the azide products 47 could be isolated (Table 3). Formation of these new oxatriazolines 23 and 24 seems likely to involve a tandem substitution-cycloaddition reaction sequence (Equation 9). [Pg.434]

Pyrrolidines are an important class of five-membered heterocycles with noteworthy biological properties [46]. In addition to pharmaceutical applications, the pyrrolidine moiety has also been widely used as a chiral auxiliary for asymmetric synthesis [47]. Although many elegant syntheses of chiral nonracemic pyrrolidines have been reported within the past decade or so [48-50], an alternative approach based on the intramolecular reaction of an azide and organoborane has been developed very recently [51-53], This approach utilizes the hydroboration-azide alkylation tandem reaction as a key sequence, taking advantage of the efficient stereocon-trolled steps. Scheme 20 shows an application of the synthesis of 3-substituted 5-(2-pyrrolidinyl)isoxazole which has been found to have nanomolar activity, comparable to (5)-nicotine, against whole rat brain [54]. [Pg.49]

The Michael-aldol process with methacrylates described in Section II.B can be also applied to the synthesis of substituted tetrahydrofurans, 245. If the reaction is carried out in THF, the yield and selectivity of the sequence decrease. It was proposed that the lithium coordination with THF molecules hinders the formation of the product 245. The authors concluded that the Lewis acidity of naked lithium cation is the key driving force for the reaction to proceed successfully. The tandem reaction with lithium thiophenolate, fumarate ester and benzaldehyde constitutes an useful methodology for the preparation of y-butyrolactone (Scheme 75)89,90. [Pg.107]

A series of tetrahydrobenzodifurans were built up by the norbomene-mediated palladium-catalyzed tandem reaction of substituted aryl iodide under microwave irradiation... [Pg.177]

In this tandem allylic C-H bond activation, followed by an elimination reaction, substituted l-zircono-lZ,3 -dienes (zirconium moiety at the terminal position of the dienyl system) were easily prepared as unique isomers. With the idea of extending this methodology to the stereoselective synthesis of 3-zircono-1,3-diene (zirconium moiety at the internal position of the dienyl system), 119 was prepared and the reactivity was investigated with (1-butene)ZrCp2 21 (119 was obtained by carbocupration of the a-allyl alkoxy-allene, Scheme 35) [79]. When 119 was submitted to the tandem reaction, the diene 120 was isolated after hydrolysis as a unique ( ,Z) isomer in 75% isolated yield (Scheme 44). [Pg.158]

The radical nucleophilic substitution is perfectly suited for tandem reactions [180]. Recent examples have been reported by the Rossi group (Scheme 66). Dihydrobenzofuranes and dihydroindoles substituted at the 3-position were prepared from ortho-functionalized haloaromatic compounds in high yields [181]. The nucleophiles involved in the initial electron transfer and subsequent coupling are varied. In particular, starting form naphthyl derivative 210, phosphinyl anions lead to tricyclic phosphine oxide 211 (after oxidation) in 98% yield. [Pg.45]

Combination of a Diels-Alder reaction and a [3,3] sigmatropic rearrangement provides access to 1,4-substituted 2-cyclohexenyl derivatives75- 76,11 . Thus, Diels-Alder reaction of ( )-l,3-bu-tadienyl thiocyanate with methyl acrylate is followed by a [3,3] sigmatropic rearrangement to the isothiocyanate. The isothiocyanate is trapped by the solvent to give racemic 0-cthyl-/V-(4-methoxycarbonyl-2-cyclohexcnyl)thiocarbamate in a 66 33 diastereomeric ratio (cisjtram). A Lewis acid catalyzed variant of this tandem reaction showed better diastereoselectivity (90 10)111. [Pg.1192]

The y-lactam 110 is prepared by the reaction of the lithium silyl-substituted ynolate 105 with the aziridine 108 activated by a p-toluenesulfonyl group. The initial product is the enolate 109, which can be acidified to yield the a-silyl-y-lactam 110. Intermediate 109 can be trapped by aldehydes to afford the a-alkylidene-y-lactams 111 via a Peterson reaction (equation 45) . These reactions may be considered to be formal [3 + 2] cycloadditions as well as tandem reactions involving nucleophilic ring opening and cyclization. [Pg.762]

We have been particularly enamored with the development of experiments involving carbon-carbon bond formation, especially as part of tandem reactions occurring in a single container (see the Diels-Alder reaction. Figure 1). One such reaction is the synthesis of simple esters of coumarin-3-carboxylic acids via a Knoevenagel condensation between malonic esters and various a-hydroxybenzaldehydes, followed by intramolecular nucleophilic acyl substitution. This conversion, catalyzed by piperidine, has been carried out under a variety of conditions, for example, at room temperature without solvent... [Pg.45]

With Mn(OAc)3, generated by oxidation of Mn(OAc)2 as mediator, a tandem reaction consisting of an intermolecular radical addition followed by an intramolecular electrophilic aromatic substitution can be accomplished [Eq. (21b)] [225b]. Further Mn(III)-mediated additions of 1,3-dicarbonyl compound to olefins are shown in Table 11 (numbers 8b,c, and 9a). Mediated by in situ generated Mn(III), methyl dibromoacetate, trichloro-bromomethane, perfluoroctyl iodide, dimethyl bromomalonate, and active methylene compounds have been added via radicals to olefins [225d]. [Pg.943]

Convergent plans for synthesis Thermodynamic control Selection of reagents for enol(ate) conjugate addition Tandem reactions and Robinson annelation Substitution may be elimination-conjugate addition In disguise... [Pg.749]


See other pages where Substitution tandem reactions is mentioned: [Pg.48]    [Pg.327]    [Pg.302]    [Pg.412]    [Pg.76]    [Pg.95]    [Pg.63]    [Pg.162]    [Pg.67]    [Pg.86]    [Pg.68]    [Pg.70]    [Pg.104]    [Pg.199]    [Pg.159]    [Pg.36]    [Pg.137]    [Pg.85]    [Pg.464]    [Pg.327]    [Pg.152]    [Pg.232]    [Pg.418]    [Pg.99]    [Pg.348]   


SEARCH



Tandem reactions

Tandem reactions reaction

© 2024 chempedia.info