Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution reactions electrophilic aromatic, selectivity

In the above examples, the nucleophilic role of the metal complex only comes after the formation of a suitable complex as a consequence of the electron-withdrawing effect of the metal. Perhaps the most impressive series of examples of nucleophilic behaviour of complexes is demonstrated by the p-diketone metal complexes. Such complexes undergo many reactions typical of the electrophilic substitution reactions of aromatic compounds. As a result of the lability of these complexes towards acids, care is required when selecting reaction conditions. Despite this restriction, a wide variety of reactions has been shown to occur with numerous p-diketone complexes, especially of chromium(III), cobalt(III) and rhodium(III), but also in certain cases with complexes of beryllium(II), copper(II), iron(III), aluminum(III) and europium(III). Most work has been carried out by Collman and his coworkers and the results have been reviewed.4-29 A brief summary of results is relevant here and the essential reaction is shown in equation (13). It has been clearly demonstrated that reaction does not involve any dissociation, by bromination of the chromium(III) complex in the presence of radioactive acetylacetone. Furthermore, reactions of optically active... [Pg.420]

As naphthalene is aromatic (ten Jl-electrons), it also undergoes electrophilic substitution reactions. Attack occurs selectively at C-l rather than C-2, because the intermediate carbocation is more stable (i.e. two resonance structures can be drawn with an intact benzene ring. For attack at C-2, only one can be drawn with an intact benzene ring). [Pg.118]

The selectivity relationship merely expresses the proportionality between intermolecular and intramolecular selectivities in electrophilic substitution, and it is not surprising that these quantities should be related. There are examples of related reactions in which connections between selectivity and reactivity have been demonstrated. For example, the ratio of the rates of reaction with the azide anion and water of the triphenylmethyl, diphenylmethyl and tert-butyl carbonium ions were 2-8x10 , 2-4x10 and 3-9 respectively the selectivities of the ions decrease as the reactivities increase. The existence, under very restricted and closely related conditions, of a relationship between reactivity and selectivity in the reactions mentioned above, does not permit the assumption that a similar relationship holds over the wide range of different electrophilic aromatic substitutions. In these substitution reactions a difficulty arises in defining the concept of reactivity it is not sufficient to assume that the reactivity of an electrophile is related... [Pg.141]

Nitration in sulphuric acid is a reaction for which the nature and concentrations of the electrophile, the nitronium ion, are well established. In these solutions compounds reacting one or two orders of magnitude faster than benzene do so at the rate of encounter of the aromatic molecules and the nitronium ion ( 2.5). If there were a connection between selectivity and reactivity in electrophilic aromatic substitutions, then electrophiles such as those operating in mercuration and Friedel-Crafts alkylation should be subject to control by encounter at a lower threshold of substrate reactivity than in nitration this does not appear to occur. [Pg.142]

The aromatic nature of lignin contrasts with the aliphatic stmcture of the carbohydrates and permits the selective use of electrophilic substitution reactions, eg, chlorination, sulfonation, or nitration. A portion of the phenoUc hydroxyl units, which are estimated to comprise 30 wt % of softwood lignin, are unsubstituted. In alkaline systems the ionized hydroxyl group is highly susceptible to oxidative reactions. [Pg.253]

Table 10.4. Selectivity in Some Electrophilic Aromatic Substitution Reactions ... Table 10.4. Selectivity in Some Electrophilic Aromatic Substitution Reactions ...
At this point, attention can be given to specific electrophilic substitution reactions. The kinds of data that have been especially useful for determining mechanistic details include linear ffee-energy relationships, kinetic studies, isotope effects, and selectivity patterns. In general, the basic questions that need to be asked about each mechanism are (1) What is the active electrophile (2) Which step in the general mechanism for electrophilic aromatic substitution is rate-determining (3) What are the orientation and selectivity patterns ... [Pg.571]

The table below gives first-order rate constants for reaction of substituted benzenes with w-nitrobenzenesulfonyl peroxide. From these data, calculate the overall relative reactivity and partial rate factors. Does this reaction fit the pattern of an electrophilic aromatic substitution If so, does the active electrophile exhibit low, moderate, or high substrate and position selectivity ... [Pg.598]

The a-selectivity is illustrated by the fact that 2-alkyl-, > 2-methoxy-, > and 2-alkyIthio-thiophenes and alkyl thenyl sul-fides ° are metalated exclusively in the 5-position. In electrophilic aromatic substitution, as previously mentioned, an appreciable amount of 3-substitution is obtained with some of these groups. After acetalization ketones can also be metalated. Thus from the diethyl ketal of 2-acetylthiophene, 2-acetyl-5-thiophenealdehyde was obtained after metalation with n-butyllithium followed by the reaction of the metalorganic compound with A,A -dimethylformamide. ... [Pg.73]

Systematic studies of the selectivity of electrophilic bromine addition to ethylenic bonds are almost inexistent whereas the selectivity of electrophilic bromination of aromatic compounds has been extensively investigated (ref. 1). This surprising difference arises probably from particular features of their reaction mechanisms. Aromatic substitution exhibits only regioselectivity, which is determined by the bromine attack itself, i.e. the selectivity- and rate-determining steps are identical. [Pg.100]

These polarizations are seen to be in the opposite direction to those in aniline (3.133), so that higher pi density remains at the Ci (junction) and C3 and C5 (meta) positions. These polarity shifts are again consistent with the well-known m-directing effect of nitro substituents in electrophilic aromatic substitution reactions, and the results are again quite independent of which starting Kekule structure is selected for the localized analysis.63... [Pg.208]

Hence the positional selectivity is different from that of the furan additions to 417 (Scheme 6.90). Assuming diradical intermediates for these reactions [9], the different types of products are not caused by the nature of the allene double bonds of 417 and 450 but by the properties of the allyl radical subunits in the six-membered rings of the intermediates. Also N-tert-butoxycarbonylpyrrole intercepted 450 in a [4 + 2]-cycloaddition and brought about 455 in 29% yield. Pyrrole itself and N-methylpyr-role furnished their substituted derivatives of type 456 in 69 and 79% yield [155, 171b]. Possibly, these processes are electrophilic aromatic substitutions with 450 acting as electrophile, as has been suggested for the conversion of 417 into 442 by pyrrole (Scheme 6.90). [Pg.323]

This awareness in a short time led to new homolytic aromatic substitutions, characterized by high selectivity and versatility. Further developments along these lines can be expected, especially as regards reactions of nucleophilic radicals with protonated heteroaromatic bases, owing to the intrinsic interest of these reactions and to the fact that classical direct ionic substitution (electrophilic and nucleophilic) has several limitations in this class of compound and does not always offer alternative synthetic solutions. Homolytic substitution in heterocyclic compounds can no longer be considered the Cinderella of substitution reactions. [Pg.180]

The selective electrophilic aromatic substitution carried out by displacement of a metallic substituent (Hg, Sn) ( F-fluorodemetallation) using [ F]p2 or [ F]AcOF remains a method of choice to introduce a fluorine atom on a specific position. In the early preparations of [6- F]fluoro-L-DOPA, the reaction of a 6-substituted mercuric derivative with [ F]acetyl hypofluorite yielded the expected compound in 11 % yield [73,74]. Reaction of a mercuric precursor, free or on a modified polystyrene support P-CH2-COOHg(DOPA precursor) allows the preparation of [ F]fluoro-L-DOPA in an overall yield up to 23 %. The polymer supports are easily prepared, require no special treatment for storage and are convenient to use in automated production [75]. [Pg.214]

The empirical data for electrophilic aromatic substitution on benzocycloalkenes over a variety of reactions and conditions show a consistent trend of increased Cp selectivity due primarily to C deactivation, with some indication that Cp activation occurs in benzobicycloalkenes. Acidity work on the benzocycloalkenes and related pyridines demonstrates clearly the extent of deactivation. The rehybridization model of Finnegan and Streitweiser has been postulated to account for the deactivation. Thummel s correlation of C y -H P a provided the necessary link between rehybridization and deactivation. Theories involving bond fixation in the Wheland intmnediate deserve some further consideration but are not essential to an understanding of the present empirical data. [Pg.252]


See other pages where Substitution reactions electrophilic aromatic, selectivity is mentioned: [Pg.783]    [Pg.184]    [Pg.189]    [Pg.77]    [Pg.177]    [Pg.555]    [Pg.564]    [Pg.565]    [Pg.566]    [Pg.579]    [Pg.156]    [Pg.603]    [Pg.34]    [Pg.163]    [Pg.168]    [Pg.152]    [Pg.1003]    [Pg.111]    [Pg.245]    [Pg.90]    [Pg.244]    [Pg.123]    [Pg.171]    [Pg.154]    [Pg.110]    [Pg.211]    [Pg.273]    [Pg.240]    [Pg.132]    [Pg.326]    [Pg.686]    [Pg.414]    [Pg.197]   
See also in sourсe #XX -- [ Pg.562 ]

See also in sourсe #XX -- [ Pg.562 ]




SEARCH



Aromaticity electrophilic aromatic substitution

Aromatics electrophilic substitution

Aromatization selectivities

Electrophile Electrophilic aromatic substitution

Electrophile reactions Electrophilic aromatic

Electrophilic aromatic reactions

Electrophilic selectivity

Electrophilic substitution reaction

Electrophilic substitution, aromatic selectivity

Reaction selective

Reactions selection

Selected reactions

Selectivity reactions

Substitution electrophilic aromatic

Substitution electrophilic aromatic substitutions

Substitution reactions aromatic

Substitution reactions electrophile

Substitution reactions electrophilic aromatic

© 2024 chempedia.info