Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Substitution, electrophilic substituent effects

The heats of formation of Tt-complexes are small thus, — A//2soc for complexes of benzene and mesitylene with iodine in carbon tetrachloride are 5-5 and i2-o kj mol , respectively. Although substituent effects which increase the rates of electrophilic substitutions also increase the stabilities of the 7r-complexes, these effects are very much weaker in the latter circumstances than in the former the heats of formation just quoted should be compared with the relative rates of chlorination and bromination of benzene and mesitylene (i 3 o6 x 10 and i a-Sq x 10 , respectively, in acetic acid at 25 °C). [Pg.117]

There were two schools of thought concerning attempts to extend Hammett s treatment of substituent effects to electrophilic substitutions. It was felt by some that the effects of substituents in electrophilic aromatic substitutions were particularly susceptible to the specific demands of the reagent, and that the variability of the polarizibility effects, or direct resonance interactions, would render impossible any attempted correlation using a two-parameter equation. - o This view was not universally accepted, for Pearson, Baxter and Martin suggested that, by choosing a different model reaction, in which the direct resonance effects of substituents participated, an equation, formally similar to Hammett s equation, might be devised to correlate the rates of electrophilic aromatic and electrophilic side chain reactions. We shall now consider attempts which have been made to do this. [Pg.137]

The more extensive problem of correlating substituent effects in electrophilic substitution by a two-parameter equation has been examined by Brown and his co-workers. In order to define a new set of substituent constants. Brown chose as a model reaction the solvolysis of substituted dimethylphenylcarbinyl chlorides in 90% aq. acetone. In the case ofp-substituted compounds, the transition state, represented by the following resonance structures, is stabilized by direct resonance interaction between the substituent and the site of reaction. [Pg.138]

The applicability of the two-parameter equation and the constants devised by Brown to electrophilic aromatic substitutions was tested by plotting values of the partial rate factors for a reaction against the appropriate substituent constants. It was maintained that such comparisons yielded satisfactory linear correlations for the results of many electrophilic substitutions, the slopes of the correlations giving the values of the reaction constants. If the existence of linear free energy relationships in electrophilic aromatic substitutions were not in dispute, the above procedure would suffice, and the precision of the correlation would measure the usefulness of the p+cr+ equation. However, a point at issue was whether the effect of a substituent could be represented by a constant, or whether its nature depended on the specific reaction. To investigate the effect of a particular substituent in different reactions, the values for the various reactions of the logarithms of the partial rate factors for the substituent were plotted against the p+ values of the reactions. This procedure should show more readily whether the effect of a substituent depends on the reaction, in which case deviations from a hnear relationship would occur. It was concluded that any variation in substituent effects was random, and not a function of electron demand by the electrophile. ... [Pg.139]

SUBSTITUENT EFFECTS IN ELECTROPHILIC AROMATIC SUBSTITUTION ACTIVATING SUBSTITUENTS... [Pg.494]

Substituent Effects in Electrophilic Aromatic Substitution Activating Substituents... [Pg.495]

A nitro group behaves the same way m both reactions it attracts electrons Reaction is retarded when electrons flow from the aromatic ring to the attacking species (electrophilic aromatic substitution) Reaction is facilitated when electrons flow from the attacking species to the aromatic ring (nucleophilic aromatic substitution) By being aware of the connection between reactivity and substituent effects you will sharpen your appreciation of how chemical reactions occur... [Pg.980]

The substituent effects in aromatic electrophilic substitution are dominated by resonance effects. In other systems, stereoelectronic effects or steric effects might be more important. Whatever the nature of the substituent effects, the Hammond postulate insists diat structural discussion of transition states in terms of reactants, intermediates, or products is valid only when their structures and energies are similar. [Pg.219]

Ipso substitution, in which the electrophile attacks a position already carrying a substituent, is relatively rare in electrophilic aromatic substitution and was not explicitly covered in Section 10.2 in the discussion of substituent effects on reactivity and selectivity Using qualitative MO cOTicepts, discuss the effect of the following types of substituents on the energy of the transition state for ipso substitution. [Pg.601]

These relative rate data per position are experimentally detennined and are known as partial rate factors. They offer a convenient way to express substituent effects in electrophilic aromatic substitution reactions. [Pg.491]

A Summary of Substituent Effects in Aromatic Substitution A summary of the activating and directing effects of substituents in electrophilic aromatic substitution is shown in Table 16.2. [Pg.569]

Substituent effect, additivity of, 570 electrophilic aromatic substitution and, 560-563 summary of. 569 Substitution reaction, 138 Substrate (enzyme), 1041 Succinic acid, structure of, 753 Sucralose, structure of. 1006 sweetness of, 1005 Sucrose, molecular model of. 999 specific rotation of, 296 structure of, 999 sweetness of, 1005 Sugar, complex, 974 d, 980 L, 980... [Pg.1316]

Kinetic studies are of little value in attempting to determine the extent of complex formation in the reaction path of electrophilic substitution. The reasons for this have been adequately presented elsewhere29 and the conclusions are that, unless the formation of the complex is rate-determining, the kinetic form is independent of complex formation. Further, the influence of complex formation on reaction rates only comes from the factors which lead in the first place to complex formation, and substituent effects are inadequate for showing the extent of complex formation though when they indicate similar effects on substitution and complex formation they provide evidence that the latter is a pathway of the former. [Pg.8]

Nitration by nitric acid in sulphuric acid has also been by Modro and Ridd52 in a kinetic study of the mechanism by which the substituent effects of positive poles are transmitted in electrophilic substitution. The rate coefficients for nitration of the compounds Pl CHi NMej (n = 0-3) given in Table 10 show that insertion of methylene groups causes a substantial decrease in deactivation by the NMej group as expected. Since analysis of this effect is complicated by the superimposed activation by the introduced alkyl group, the reactivities of the... [Pg.27]

Arrhenius parameters for nitration of 4-aikylphenyltrimethyiammonium ions in nitric acid-sulphuric acid mixtures (Table 12). It was argued that the observed Baker-Nathan order of alkyl substituent effect was, in fact, the result of a steric effect superimposed upon an inductive order. However, a number of assumptions were involved in this deduction, and these render the conclusion less reliable than one would like it would be useful to have the thermodynamic parameters for nitration of the methyl substituted compound in particular, in order to compare with the data for the /-butyl compound, though experimental difficulties may preclude this. It would not be surprising if a true Baker-Nathan order were observed because it is observed for all other electrophilic substitutions in this medium1. [Pg.29]

The wide variation in the entropy factors for both the substituted phenyl and heterocyclic compounds and in particular for the methoxyphenyl and furan derivatives was considered to be strong evidence for solvent effects being predominant in determining the activation entropy. Consequently, discussion of the substituent effects in terms of electronic factors alone requires caution in this reaction. Caution is also needed since rates for the substituted phenyl compounds were only determined over a 20 °C range. The significance of entropy factors has also been indicated by the poor correlation of the data of the electrophilic reactivities of the heterocyclic compounds, as derived from protodemercuration, with the data for other electrophilic substitutions and related reactions572. [Pg.287]


See other pages where Substitution, electrophilic substituent effects is mentioned: [Pg.88]    [Pg.1090]    [Pg.175]    [Pg.979]    [Pg.39]    [Pg.213]    [Pg.557]    [Pg.566]    [Pg.979]    [Pg.381]    [Pg.561]    [Pg.760]    [Pg.1295]    [Pg.1]    [Pg.194]    [Pg.243]    [Pg.359]    [Pg.494]    [Pg.148]   
See also in sourсe #XX -- [ Pg.683 , Pg.691 ]




SEARCH



Effect of substituents on electrophilic aromatic substitution

Effects of Multiple Substituents on Electrophilic Aromatic Substitution

Effects of Substituents in Electrophilic Substitution

Electrophilic aromatic substitution conjugating substituents, effect

Electrophilic aromatic substitution reaction rates, substituents effect

Electrophilic aromatic substitution reaction substituent effects

Electrophilic aromatic substitution substituent effects

Electrophilic substitution substituents

Substituent Effects in Electrophilic Aromatic Substitution Activating Substituents

Substituent Effects in Electrophilic Aromatic Substitution Halogens

Substituent Effects in Electrophilic Aromatic Substitution Strongly Deactivating Substituents

Substituent Effects in Electrophilic Substitutions

Substituent effect, additivity electrophilic aromatic substitution

Substituent effects in electrophilic aromatic substitution

Substituent effects substitution

Substituents Substitution

Substituents electrophilic

Substituted substituents

© 2024 chempedia.info