Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject surroundings

The second, reported some 40 years later, is not really contradictory. Here the TMPEA was administered orally, and the subject surrounded himself with a battery of psychological tests. This might allow statistics to provide an aura of validity to the observations. But the comments are pretty self-explanatory. The drug was not active in its own right, but when employed preliminary to mescaline, greatly enhanced the effects of the latter. [Pg.220]

The first part of the book deals with definitions and fundamental subjects surrounding the polymerization of fluoropol)miers. Basic subjects such as the identification of fluoropolymers, their key properties, and some of their everyday uses are addressed. The main monomer, tetrafluoroethylene, is extremely flammable and explosive. Consequently, safe polymerization of this monomer requires special equipment and technology. Molecular forces within these polymers are reviewed and coimected to macro properties. Monomer and polymer synthesis techniques and properties are described. Part One ends with a detailed list of advertised commercial grades of fluoroplastics. [Pg.1]

The formation of carbon black in a candle flame was the subject of a series of lectures in the 1860s by Michael Faraday at the Royal Institution in London (23). Faraday described the nature of the diffusion flame, the products of combustion, the decomposition of the paraffin wax to form hydrogen and carbon, the luminosity of the flame because of incandescent carbon particles, and the destmctive oxidation of the carbon by the air surrounding the flame. Since Faraday s time, many theories have been proposed to account for carbon formation in a diffusion flame, but controversy still exists regarding the mechanism (24). [Pg.543]

Quite often problems arise when instruments for normal seiwice are subjected to low temperature use. Since some metals become brittle at low temperatures, the instrument hteraUy falls apart. Elastomeric gaskets and seals contract faster with decreasing temperatures than the surrounding metal parts, and the seal often is lost. Even hermetically sealed instruments can develop pin holes or small cracks to permit ciyogenic liqmds to enter these cases with time. Warming the instrument causes the trapped hquid to vaporize, sometimes generating excessive gas pressure and failure of the case. [Pg.1136]

The intensity of an eailhquake is a subjective assessment of its effects on the primary systems and inhabitants in surrounding areas and is measured on the Mercalli scale. As noted above, this decreases with distance from the epicentre while the magnitude remains the same. For details refer to DD ENV 1998. Generally, the magnitude and intensity of an earthquake at a location are interrelated. [Pg.439]

For a shock wave in a solid, the analogous picture is shown schematically in Fig. 2.6(a). Consider a compression wave on which there are two small compressional disturbances, one ahead of the other. The first wavelet moves with respect to its surroundings at the local sound speed of Aj, which depends on the pressure at that point. Since the medium through which it is propagating is moving with respect to stationary coordinates at a particle velocity Uj, the actual speed of the disturbance in the laboratory reference frame is Aj - -Ui- Similarly, the second disturbance advances at fl2 + 2- Thus the second wavelet overtakes the first, since both sound speed and particle velocity increase with pressure. Just as a shallow water wave steepens, so does the shock. Unlike the surf, a shock wave is not subject to gravitational instabilities, so there is no way for it to overturn. [Pg.18]

But cracks can form, and grow slowly, at loads lower than this, if either the stress is cycled or if the environment surrounding the structure is corrosive (most are). The first process of slow crack growth - fatigue - is the subject of this chapter. The second -corrosion - is discussed later, in Chapters 21 to 24. [Pg.146]

Most polymer processing methods involve heating and cooling of the polymer melt. So far the effect of the surroundings on the melt has been assumed to be small and experience in the situations analysed has proved this to be a reasonable assumption. However, in most polymer flow studies it is preferable to consider the effect of heat transfer between the melt and its surroundings. It is not proposed to do a detailed analysis of heat transfer techniques here, since these are dealt with in many standard texts on this subject. Instead some simple methods which may be used for heat flow calculations involving plastics are demonstrated. [Pg.391]

The metabolic rate can be measured in several ways. When no external work is being performed, the metabolic rate equals the heat output of the body. This heat output can be measured by a process called direct calorimetry. In this process, the subject IS placed m an insulated chamber that is surrounded by a water jacket. Water flows through the jacket at constant input temperature. The heat from the subject s body warms the air of the chamber and is then removed by the water flowing through the jacketing. By measuring the difference between the inflow and outflow water temperatures and the volume of the water heated, it is possible to calculate the subject s heat output, and thus the metabolic rate, in calories. [Pg.176]

A system is any part of external reality that can be subjected to thermodynamic treatment the material with which the system is in contact forms the surroundings, e.g. an electrochemical cell could be the system and the external atmosphere the surroundings. [Pg.1219]

A little of this is lost by radiation if the surrounding surfaces are cold and some as sensible heat, by convection from the skin. The remainder is taken up as latent heat of moisture from the respiratory tissues and perspiration from the skin (see Table 23.2). Radiant loss will be very small if the subject is clothed, and is ignored in this table. [Pg.234]

Blind hole In regard to molding products that include holes, it is important to ensure that sufficient material surrounds the holes and melt flows property. A core pin forming blind holes is subjected to the bending forces that exist in the cavity due to the high melt pressures. Calculations can be made for each case by establishing the core pin diameter, its length, and the anticipated pressure conditions in the cavity (3). [Pg.187]


See other pages where Subject surroundings is mentioned: [Pg.282]    [Pg.271]    [Pg.2228]    [Pg.2971]    [Pg.208]    [Pg.97]    [Pg.101]    [Pg.104]    [Pg.515]    [Pg.300]    [Pg.545]    [Pg.164]    [Pg.89]    [Pg.370]    [Pg.234]    [Pg.308]    [Pg.327]    [Pg.550]    [Pg.2057]    [Pg.2132]    [Pg.196]    [Pg.481]    [Pg.272]    [Pg.140]    [Pg.173]    [Pg.250]    [Pg.897]    [Pg.114]    [Pg.394]    [Pg.7]    [Pg.565]    [Pg.764]    [Pg.1164]    [Pg.98]    [Pg.1052]    [Pg.19]    [Pg.180]   
See also in sourсe #XX -- [ Pg.165 , Pg.169 ]




SEARCH



Surround

Surrounding

Surroundings

© 2024 chempedia.info