Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject optical activity

It appeared to follow from this that the three known forms of hyoscin are respectively Z-tropyl-dZ-oscine, d-tropyl-dZ-oscine and dZ-tropyl-dZ-oscim the optical activity of the first two being conditioned solely by the activit of the tropyl radicle. This subject was discussed by King, who confirme... [Pg.86]

The subject was then fully investigated by Pyman, who found that the products obtained depended partly on the material started with and partly on the conditions of the experiment. Thus under his conditions, Z-canadine methohydroxide when dried in vacuo gave rise to three anhydro-bases, a and b optically inactive, and c optically active whilst the methohydroxide of the dZ-base formed only two, a and Z , but the proportion of b formed in this instance was equal to the amount of b and c together in the case of the Z-base (canadine). For this and other reasons b was regarded as the racemic form of c and, like it, is represented by F (R = Me),... [Pg.337]

This review is not comprehensive but emphasizes the more recent literature through 1985 into early 1986. References to earlier work are included in an affort to make the subject understandable to those unfamiliar with past research and also to cover topics not touched upon in recent publications. The term optically active is used here in the sense that the chiral molecule under discussion is nonracemic but not necessarily enantiomerically pure. The terms homochiral and optically pure are used synonymously with enantiomerically pure. [Pg.56]

Some limitations of the subject surveyed have been necessary in order to keep the size of the chapter within the reasonable bounds. Accordingly, to make it not too long and readable, the discussion of the methods of the sulphoxide synthesis will be divided into three parts. In the first part, all the general methods of the synthesis of sulphoxides will be briefly presented. In the second one, methods for the preparation of optically active sulphoxides will be discussed. The last part will include the synthetic procedures leading to functionalized sulphoxides starting from simple dialkyl or arylalkyl sulphoxides. In this part, however, the synthesis of achiral, racemic and optically active sulphoxides will be treated together. Each section and subsection includes, where possible, some considerations of mechanistic aspects as well as short comments on the scope and limitations of the particular reaction under discussion. [Pg.235]

Thereafter, however, P-chirogenic phosphine ligands were the subject of less investigation since the synthesis of highly enantiomerically enriched P-stereo-genic phosphines often proves difficult. Another reluctance Hes in the fact that this class of phosphines, especially diaryl- and triarylphosphines, is conforma-tionally unstable and gradually racemize at high temperature [57,58]. In contrast, optically active trialkylphosphines are known to be optically stable even at considerably elevated temperature. [Pg.8]

To obtain a better understanding of the reaction mechanism, some compounds that are considered to he intermediates were subjected to the reaction. Various reaction courses can be considered as illustrated in Fig. 21. Path A a-Methyltropic acid is oxidized to a-phenyl-a-methylmalonic acid. Then, the malonate is converted to optically active a-phenylpropionate hy arylmalonate decarboxylase. In order to confirm this assumption, incubation of the malonic acid with Rhodococcus sp. was carried out. The result obtained was the total recovery of the substrate, indicating that no decarboxylase is present in this bacterium. Path B a-Methyltropic acid is converted to racemic a-phenylpropionic acid, which is deracemized to optically active propionic acid. To examine the possibility of this route, racemic a-phenylpropionic acid was subjected to the reaction to observe... [Pg.335]

Optically active drugs now occupy centre stage status and some agrochemicals like (S)-metolachlor, have also been introduced as optically pure isomers, so that the ballast of the unwanted isomer is avoided. Asymmetric synthesis is a topic of great interest in current research, and there is a steady flow of articles, reviews and books on almost every aspect of this subject. Table 4.8 lists examples of industrially important asymmetric synthesis. [Pg.174]

Small gold clusters (<100 atoms) have become the subject of interest because of their use as building blocks of nanoscale devices and because of their quantum-size effects and novel properties such as photoluminescence, magnetism, and optical activity [427]. [Pg.364]

Asymmetric Allylation. One of the recent new developments on this subject is the asymmetric allylation reaction. It was found that native and trimethylated cyclodextrins (CDs) promote enantiose-lective allylation of 2-cyclohexenone and aldehydes using Zn dust and alkyl halides in 5 1 H2O-THF. Moderately optically active products with ee up to 50% were obtained.188 The results can be rationalized in terms of the formation of inclusion complexes between the substrates and the CDs and of their interaction with the surface of the metal. [Pg.256]

Prototropic interconversions have been the subject of much detailed study, as they lend themselves particularly well to investigation by deuterium labelling, both in solvent and substrate, and by charting the stereochemical fate of optically active substrates having a chiral centre at the site of proton departure. Possible limiting mechanisms (cf. SNl/SN2) are those (a) in which proton removal and proton acceptance (from the solvent) are separate operations, and a carbanion intermediate is involved, i.e. an intermolecular pathway and (b) in which one and the same proton is transferred intramolecularly ... [Pg.278]

Diazoesters 422 were subjected to the action of Rh2(OAc)4 to give optically active methyl (4.Y,11 a.S )-1 -oxo-l,3,4,6,ll,lla-hexahydro[l,4]oxazino[4,3-A isoquinoline-4-carboxylates 423 (Equation 79) <1995SL237>. [Pg.157]

Palladium-catalyzed bis-silylation of methyl vinyl ketone proceeds in a 1,4-fashion, leading to the formation of a silyl enol ether (Equation (47)).121 1,4-Bis-silylation of a wide variety of enones bearing /3-substituents has become possible by the use of unsymmetrical disilanes, such as 1,1-dichloro-l-phenyltrimethyldisilane and 1,1,1-trichloro-trimethyldisilane (Scheme 28).129 The trimethylsilyl enol ethers obtained by the 1,4-bis-silylation are treated with methyllithium, generating lithium enolates, which in turn are reacted with electrophiles. The a-substituted-/3-silyl ketones, thus obtained, are subjected to Tamao oxidation conditions, leading to the formation of /3-hydroxy ketones. This 1,4-bis-silylation reaction has been extended to the asymmetric synthesis of optically active /3-hydroxy ketones (Scheme 29).130 The key to the success of the asymmetric bis-silylation is to use BINAP as the chiral ligand on palladium. Enantiomeric excesses ranging from 74% to 92% have been attained in the 1,4-bis-silylation. [Pg.745]

If the alkenes and acetylenes that are subjected to the reaction mediated by 1 have a leaving group at an appropriate position, as already described in Eq. 9.16, the resulting titanacycles undergo an elimination (path A) as shown in Eq. 9.58 [36], As the resulting vinyltitaniums can be trapped by electrophiles such as aldehydes, this reaction can be viewed as an alternative to stoichiometric metallo-ene reactions via allylic lithium, magnesium, or zinc complexes (path B). Preparations of optically active N-heterocycles [103], which enabled the synthesis of (—)-a-kainic acid (Eq. 9.59) [104,105], of cross-conjugated trienes useful for the diene-transmissive Diels—Alder reaction [106], and of exocyclic bis(allene)s and cyclobutene derivatives [107] have all been reported based on this method. [Pg.346]

Photochemically Triggered Induced Circular Dichroism in Liposomes When an optically inactive chromophore is subject to the effect of optically active environment, optical activity may be induced at the absorption wavelength of the optically inactive chromophore. This phenomenon of induced circular dichroism(ICD) is often observed in polypeptides bearing various achiral chromophores on the side chain( ). The strong chiral environment caused by the peptide helix structure is responsible for this. Distance from, and orientation to, the chiral field decide the degree of ICD appearing on the achiral chromophore. [Pg.216]

LAS congeners are usually racemic mixtures of optically active compounds [10], and their transient degradative intermediates are also usually optically active [87]. Most of these intermediates are transients, but some can have long half-lives [88]. Some LAS congeners are evidently subject to attack at both methyl groups on the alkyl chain as sulfophenyl dicarboxylates (SPdCs) are also detected during the degradation of LAS [88]. [Pg.562]

In the last two decades optically active sulfur compounds have found wide application in asymmetric synthesis. This is mainly because organic sulfur compounds are quite readily available in optically active form. Moreover, the chiral sulfur groupings that induce optical activity can be removed from the molecule easily, under fairly mild conditions, thus presenting an additional advantage in the asymmetric synthesis of chiral compounds. This section deals with reactions in which asymmetric induction in transfer of chirality from sulfur to other centers was observed. This subject has been treated only in a cursory manner in recent reviews on asymmetric synthesis (290-292). [Pg.435]

To elucidate the metabolic pathway of phenylmalonic acid, the incubation broth of A. bronchisepticus on phenylmalonic acid was examined at the early stage of cultivation. After a one-day incubation period, phenylmalonic acid was recovered in 80% yield. It is worthy of note that the supposed intermediate, mandelic acid, was obtained in 1.4% yield, as shown in Eq. (8). The absolute configuration of this oxidation product was revealed to be S. After 2 days, no metabolite was recovered from the broth. It is highly probable that the intermediary mandelic acid is further oxidized via benzoylformic acid. As the isolated mandelic acid is optically active, the enzyme responsible for the oxidation of the acid is assumed to be S-specific. If this assumption is correct, the enzyme should leave the intact l -enantiomer behind when a racemic mixture of mandelic acid is subjected to the reaction. This expectation was nicely realized by adding the racemate of mandelic acid to a suspension of A. bronchisepticus after a 4-day incubation [4]. [Pg.4]

Hydroperoxides play an important role as oxidants in organic synthesis [56-58]. Although several methods are available for the preparation of racemic hydroperoxides, no convenient method of a broad scope was until recently [59] known for the synthesis of optically active hydroperoxides. Such peroxides have potential as oxidants in the asymmetric oxidation of organic substrates, currently a subject of intensive investigations in synthetic organic chemistry [60, 61]. The application of lipoxygenase [62-65] and lipases [66,67] facilitated the preparation of optically active hydroperoxides by enzymes for the first time. [Pg.81]


See other pages where Subject optical activity is mentioned: [Pg.14]    [Pg.14]    [Pg.1214]    [Pg.189]    [Pg.29]    [Pg.244]    [Pg.331]    [Pg.56]    [Pg.174]    [Pg.175]    [Pg.153]    [Pg.197]    [Pg.33]    [Pg.163]    [Pg.56]    [Pg.73]    [Pg.2]    [Pg.386]    [Pg.340]    [Pg.565]    [Pg.295]    [Pg.493]    [Pg.171]    [Pg.223]    [Pg.815]    [Pg.830]    [Pg.211]    [Pg.615]    [Pg.175]    [Pg.471]    [Pg.325]   
See also in sourсe #XX -- [ Pg.56 , Pg.570 ]




SEARCH



Optically active Subject

Subject optical

© 2024 chempedia.info