Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene silanes

On the other hand, the results of the hydrosilylation reactions using different styrene-silane ratios for a reaction model indicate that the most adequate proportion was two mol of styrene for 1.5 mol of silane, and it was selected for ulterior experiments. The use of lower ratios than the above yields large quantities of disiloxane which is probably produced by a free-radical, non metal-catalysed, reaction pathway. [Pg.504]

Fig. 22. Adhesion rating based on flexural sti engths of laminates of poly(styrene) with glass treated with various silane coupling agents vs. solubility parameter of the organo-functional group of the coupling agent. From ref. [117], by permission. Fig. 22. Adhesion rating based on flexural sti engths of laminates of poly(styrene) with glass treated with various silane coupling agents vs. solubility parameter of the organo-functional group of the coupling agent. From ref. [117], by permission.
On the organic side of the interface, chemical bonds are formed between the organofunctional R group of the silane and the reactive species in the polymer matrix. For example, a methacrylate- or styryl-functional silane reacts with polyesters copolymerized with styrene or similar monomers, while amino- or chloroalkyl-functional silanes are unsuitable in this particular case. Polybutadiene... [Pg.408]

Styrene monomer was also copolymerized with a series of functional monomers by using a single-step dispersion copolymerization procedure carried out in ethanol as the dispersion medium by using azobisizobu-tyronitrile and polyvinylpyrollidone as the initiator and the stabilizer, respectively [84]. The comonomers were methyl methacrylate, hydroxyethyl acrylate, metha-crylic acid, acrylamide, allyltrietoxyl silane, vinyl poly-dimethylsiloxane, vinylsilacrown, and dimethylamino-... [Pg.216]

The observation of the spectrum for styrene polymerized on the surface of silane-treated silica and of the difference spectrum of polystyrene adsorbed on the surface of silica have revealed that there are absorption bands of atactic polystyrene at 1602, 1493, 1453, 756, and 698 cm. The absorption bands at 1411 and 1010 cm are related to vinyl trimethoxy silane, and C of the difference spectrum is below the base line. This indicates that the vinyl groups of silane react with styrene to form a copolymer. [Pg.827]

Figure 15 High-surface area silica treated with aqueous solution of 1 wt% vinyltrimethoxy silane. A silica was polymerized with styrene and washed with CS2 three times. Polystyrene produced in experiment A was deposited with B silica and the silica washed with CS2 three times. (From Ref. 77.)... Figure 15 High-surface area silica treated with aqueous solution of 1 wt% vinyltrimethoxy silane. A silica was polymerized with styrene and washed with CS2 three times. Polystyrene produced in experiment A was deposited with B silica and the silica washed with CS2 three times. (From Ref. 77.)...
Figure 17 Raman spectra of a glass fiber/matrix interfaces. (A) styrene monomer (B) untreated E-glass fiber coated with polystyrene, (C) E-glass fiber treated with y-methacryloxy propyl trimethoxy silane. Figure 17 Raman spectra of a glass fiber/matrix interfaces. (A) styrene monomer (B) untreated E-glass fiber coated with polystyrene, (C) E-glass fiber treated with y-methacryloxy propyl trimethoxy silane.
Palladium-catalyzed hydrosilylation of styrene derivatives usually proceeds with high regioselectivity to produce benzylic silanes, 1-aryl-1-silyle thanes, because of the... [Pg.77]

With cyclohexene, polymerization occurs more rapidly than hydrosilation. After polymerization has proceeded to completion, there is a slow hydrosilation to introduce cyclohexyl groups onto the polymer chain, to a maximum extent of about 50 per cent of the Si-H groups. With more reactive olefins, such as styrene, hydrosilation occurs more rapidly than polymerization and the polymerization reaction is suppressed. As in the polymerization reaction, the reactivity of primary silanes is much greater than... [Pg.93]

To obtain reproducible kinetic data, Reiksfel d had to add styrene to a solution of [PhCH=CH2PtCl2]2 before MeCl2SiH was added. When the silane was added first and styrene was withheld for about 10 minutes, the rate of hydrosilation was noticeably retarded. [Pg.414]

The asymmetric hydrosilylation that has been most extensively studied so far is the palladium-catalyzed hydrosilylation of styrene derivatives with trichlorosilane. This is mainly due to the easy manipulation of this reaction, which usually proceeds with perfect regioselectivity in giving benzylic silanes, 1-aryl-1-silylethanes. This regioselectivity is ascribed to the formation of stable 7t-benzylpalladium intermediates (Scheme 3).1,S Sa It is known that bisphosphine-palladium complexes are catalytically much less active than monophosphine-palladium complexes, and, hence, asymmetric synthesis has been attempted by use of chiral monodentate phosphine ligands. In the first report published in 1972, menthyldiphenylphosphine 4a and neomenthyldiphenylphosphine 4b have been used for the palladium-catalyzed reaction of styrene 1 with trichlorosilane. The reactions gave l-(trichlorosilyl)-l-phenylethane 2 with 34% and 22% ee, respectively (entries 1 and 2 in Table l).22 23... [Pg.817]

A chiral bis(oxazolinyl)phenylrhodium complex was found to catalyze the asymmetric hydrosilylation of styrenes with hydro(alkoxy)silanes such as HSiMe(OEt)2 (Scheme 7).47 Although the regioselectivity in forming branched product 27 is modest, the enantiomeric purity of the branched product 27 is excellent for styrene and its derivatives substituted on the phenyl group. The hydrosilylation products were readily converted into the corresponding benzylic alcohols 29 (up to 95% ee) by the Tamao oxidation. [Pg.821]

Table XII. Effect of Organic Additives (Urea, Silanes, Fluorinated Alkyl esters) on Grafting of Styrene to Polypropylene Initiated by UVa... Table XII. Effect of Organic Additives (Urea, Silanes, Fluorinated Alkyl esters) on Grafting of Styrene to Polypropylene Initiated by UVa...
Several reactions of halogen-substituted carbon-centered radicals with silanes have been studied, but limited kinetic information is available for reactions of halogen-substituted radicals with tin hydrides. A rate constant for reaction of the perfluorooctyl radical with Bu3SnH was determined by competition against addition of this radical to styrenes, reactions that were calibrated directly by LFP methods.93 At ambient temperature, the n-C8F17 radical reacts with tin hydride two orders of magnitude faster than does an alkyl radical, consistent with the electron-deficient nature of the perflu-oroalkyl radical and the electron-rich character of the tin hydride. Similar behavior was noted previously for reactions of silanes with perhaloalkyl radicals. [Pg.97]

Based on this approach Schouten et al. [254] attached a silane-functionalized styrene derivative (4-trichlorosilylstyrene) on colloidal silica as well as on flat glass substrates and silicon wafers and added a five-fold excess BuLi to create the active surface sites for LASIP in toluene as the solvent. With THF as the reaction medium, the BuLi was found to react not only with the vinyl groups of the styrene derivative but also with the siloxane groups of the substrate. It was found that even under optimized reaction conditions, LASIP from silica and especially from flat surfaces could not be performed in a reproducible manner. Free silanol groups at the surface as well as the ever-present impurities adsorbed on silica, impaired the anionic polymerization. However, living anionic polymerization behavior was found and the polymer load increased linearly with the polymerization time. Polystyrene homopolymer brushes as well as block copolymers of poly(styrene-f)lock-MMA) and poly(styrene-block-isoprene) could be prepared. [Pg.414]

Therefore, once the silane coated glass fibers are in contact with uncured resins, the R-groups on the fiber surface react with the functional groups present in the polymer resin, such as methacrylate, amine, epoxy and styrene groups, forming a stable covalent bond with the polymer (Fig. 5.3(d)). It is essential that the R-group... [Pg.175]


See other pages where Styrene silanes is mentioned: [Pg.296]    [Pg.296]    [Pg.135]    [Pg.364]    [Pg.45]    [Pg.416]    [Pg.417]    [Pg.483]    [Pg.828]    [Pg.29]    [Pg.363]    [Pg.810]    [Pg.987]    [Pg.1053]    [Pg.33]    [Pg.6]    [Pg.94]    [Pg.173]    [Pg.75]    [Pg.280]    [Pg.413]    [Pg.435]    [Pg.815]    [Pg.821]    [Pg.824]    [Pg.123]    [Pg.240]    [Pg.405]    [Pg.102]    [Pg.407]    [Pg.428]    [Pg.177]    [Pg.102]    [Pg.31]    [Pg.76]   


SEARCH



SILANE, TRIMETHYL Styrene

© 2024 chempedia.info