Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene olefin plants

The chemical uses for ethylene prior to World War II were limited, for the most part, to ethylene glycol and ethyl alcohol. After the war, the demand for styrene and polyethylene took off, stimulating ethylene production and olefin plant construction. Todays list of chemical applications for ethylene reads like the WTiat s What of petrochemicals polyethylene, ethylbenzene (a precursor to styrene), ethylene dichloride, vinyl chloride, ethylene oxide, ethylene glycol, ethyl alcohol, vinyl acetate, alpha olefins, and linear alcohols are some of the more commercial derivatives of ethylene. The consumer products derived from these chemicals are found everywhere, from soap to construction materials to plastic products to synthetic motor oils. [Pg.82]

The dominant share of styrene production comes from dehydrogenation of EB in plants like that shown in Figure 8-5. Some comes as a coproduct in propylene oxide/styrene plants. An even smaller amount is recovered from the gasoline fraction of olefins plants cracking heavy liquids. [Pg.125]

A typical worldscale olefins plant producing a billion pounds a year of ethylene from heavy liquids can also yield up to 50 million pounds of styrene. Since the styrene is a coproduct, and the extraction costs are modest, the economics are very attractive compared to on-purpose styrene. [Pg.131]

The ethylene feedstock used in most plants is of high purity and contains 200—2000 ppm of ethane as the only significant impurity. Ethane is inert in the reactor and is rejected from the plant in the vent gas for use as fuel. Dilute gas streams, such as treated fluid-catalytic cracking (FCC) off-gas from refineries with ethylene concentrations as low as 10%, have also been used as the ethylene feedstock. The refinery FCC off-gas, which is otherwise used as fuel, can be an attractive source of ethylene even with the added costs of the treatments needed to remove undesirable impurities such as acetylene and higher olefins. Its use for ethylbenzene production, however, is limited by the quantity available. Only large refineries are capable of deUvering sufficient FCC off-gas to support an ethylbenzene—styrene plant of an economical scale. [Pg.478]

Styrene, one of the world s major organic chemicals, is derived from ethylene via ethylbenzene. Several recent developments have occurred with respect to this use for ethylene. One is the production of styrene as a co-product of the propylene oxide process developed by Halcon International (12). In this process, benzene is alkylated with ethylene to ethylbenzene, and the latter is oxidized to ethylbenzene hydroperoxide. This hydroperoxide, in the presence of suitable catalysts, can convert a broad range of olefins to their corresponding oxirane compounds, of which propylene oxide presently has the greatest industrial importance. The ethylbenzene hydroperoxide is converted simultaneously to methylphenyl-carbinol which, upon dehydration, yields styrene. Commercial application of this new development in the use of ethylene will be demonstrated in a plant in Spain in the near future. [Pg.161]

The most important monomers for the production of polyolefins, in terms of industrial capacity, are ethylene, propylene and butene, followed by isobutene and 4-methyl-1-pentene. Higher a-olefins, such as 1-hexene, and cyclic monomers, such as norbornene, are used together with the monomers mentioned above, to produce copolymer materials. Another monomer with wide application in the polymer industry is styrene. The main sources presently used and conceivably usable for olefin monomer production are petroleum (see also Chapters 1 and 3), natural gas (largely methane plus some ethane, etc.), coal (a composite of polymerized and cross-linked hydrocarbons containing many impurities), biomass (organic wastes from plants or animals), and vegetable oils (see Chapter 3). [Pg.222]


See other pages where Styrene olefin plants is mentioned: [Pg.38]    [Pg.130]    [Pg.130]    [Pg.49]    [Pg.527]    [Pg.151]    [Pg.332]    [Pg.459]    [Pg.466]    [Pg.502]    [Pg.269]    [Pg.123]    [Pg.171]    [Pg.262]    [Pg.457]    [Pg.412]    [Pg.7693]    [Pg.255]    [Pg.714]   
See also in sourсe #XX -- [ Pg.130 ]




SEARCH



Styrene plant

© 2024 chempedia.info