Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene-butadiene rubbers vinyl-substituted

Some specific recent applications of the chromatography-mass spectrometry technique to various types of polymers include the following PE [130, 131], poly(l-octene), poly(l-decene), poly(l-dodecene) and 1-octene-l-decene-l-dodecene terpolymer [132], chlorinated polyethylene [133], polyolefins [134,135], acrylic acid, methacrylic acid copolymers [136, 137], polyacrylate [138], styrene-butadiene and other rubbers [139-141], nitrile rubber [142], natural rubbers [143,144], chlorinated natural rubber [145,146], polychloroprene [147], PVC [148-150], silicones [151,152], polycarbonates (PC) [153], styrene-isoprene copolymers [154], substituted PS [155], polypropylene carbonate [156], ethylene-vinyl acetate copolymer [157], Nylon 6,6 [158], polyisopropenyl cyclohexane-a-methylstyrene copolymers [195], cresol-novolac epoxy resins [160], polymeric flame retardants [161], poly(4-N-alkylstyrenes) [162], pol)winyl pyrrolidone [31,163], vinyl pyrrolidone-methacryloxysilicone copolymers [164], polybutylcyanoacrylate [165], polysulfide copolymers [1669], poly(diethyl-2-methacryloxy) ethyl phosphate [167, 168], ethane-carbon monoxide copolymers [169], polyetherimide [170], and bisphenol-A [171]. [Pg.125]

About half of the styrene produced is polymerized to polystyrene, an easily molded, low-cost thermoplastic that is somewhat brittle. Foamed polystyrene can be made by polymerizing it in the presence of low-boiling hydrocarbons, which cause bubbles of gas in the solid polymer after which it migrates out and evaporates. Modification and property enhancement of polystyrene-based plastics can be readily accomplished by copolymerization with other substituted ethylenes (vinyl monomers) for example, copolymerization with butadiene produces a widely used synthetic rubber. [Pg.125]

Through the years other monomers have been investigated. The diene commonly employed is 1,3-butadiene, although isoprene, 2-ethyl butadiene, 2,3-dimethyl butadiene, piperylene, and other substituted dienes have been investigated. The nitrile commonly employed is acrylonitrile. It has been reported that when part of the acrylonitrile is replaced by methacrylo-nitrile or ethacrylonitrile, the cement-making properties of the rubber are improved. Small proportions of a third monomer may also be used in conjunction with the two principal components. Hycar 1072, which employs methacrylic acid as the third monomer, is occasionally used in adhesive applications. Other monomers including ethyl acrylate, methyl methacrylate, styrene, vinylidene chloride, acrylic acid, N-vinyl-2-pyrrolidone, and vinyl acetate have been employed in varying amounts to adjust the adhesive and elastomeric properties. [Pg.207]


See other pages where Styrene-butadiene rubbers vinyl-substituted is mentioned: [Pg.227]    [Pg.588]    [Pg.90]    [Pg.588]    [Pg.8]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Butadiene rubber 1,2, vinyl

Butadienes substituted

Rubber substitutes

Styrene-butadiene

Styrene-butadiene rubber

Styrene/substituted styrenes

Styrenes Substitution

Substituted styrenes

Substitution, vinyl

Vinyl styrene

Vinyl styrene-butadiene rubber

Vinylic substitution

© 2024 chempedia.info