Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stress Relaxation Viscoelastic Properties

Polymers are viscoelastic materials that exhibit characteristics of both solids and liquids. Their mechanical response is both time and temperature dependent, with what is often described as time-dependent elastic properties. As described in Section 4.2.3, viscoelastic materials will undergo creep and stress relaxation. Viscoelasticity is discussed in more detail in Chapter 5. [Pg.357]

Tensile Testing. The most widely used instmment for measuring the viscoelastic properties of soHds is the tensile tester or stress—strain instmment, which extends a sample at constant rate and records the stress. Creep and stress—relaxation can also be measured. Numerous commercial instmments of various sizes and capacities are available. They vary greatiy in terms of automation, from manually operated to completely computer controlled. Some have temperature chambers, which allow measurements over a range of temperatures. Manufacturers include Instron, MTS, Tinius Olsen, Apphed Test Systems, Thwing-Albert, Shimadzu, GRC Instmments, SATEC Systems, Inc., and Monsanto. [Pg.195]

A typical stress—strain curve generated by a tensile tester is shown in Eigure 41. Creep and stress—relaxation results are essentially the same as those described above. Regarding stress—strain diagrams and from the standpoint of measuring viscoelastic properties, the early part of the curve, ie, the region... [Pg.195]

Those interested in the theory of viscoelasticity and in the relationship of materials properties to their molecular structure tend to concentrate more on stress-relaxation than... [Pg.72]

The time/temperature-dependent change in mechanical properties results from stress relaxation and other viscoelastic phenomena that are typical of these plastics. When the change is an unwanted limitation it is called creep. When the change is skillfully adapted to use in the overall design, it is referred to as plastic memory. [Pg.368]

There are two further related sets of tests that can be used to give information on the mechanical properties of viscoelastic polymers, namely creep and stress relaxation. In a creep test, a constant load is applied to the specimen and the elongation is measured as a function of time. In a stress relaxation test, the specimen is strained quickly to a fixed amount and the stress needed to maintain this strain is also measured as a function of time. [Pg.104]

Although many different processes can control the observed swelling kinetics, in most cases the rate at which the network expands in response to the penetration of the solvent is rate-controlling. This response can be dominated by either diffu-sional or relaxational processes. The random Brownian motion of solvent molecules and polymer chains down their chemical potential gradients causes diffusion of the solvent into the polymer and simultaneous migration of the polymer chains into the solvent. This is a mutual diffusion process, involving motion of both the polymer chains and solvent. Thus the observed mutual diffusion coefficient for this process is a property of both the polymer and the solvent. The relaxational processes are related to the response of the polymer to the stresses imposed upon it by the invading solvent molecules. This relaxation rate can be related to the viscoelastic properties of the dry polymer and the plasticization efficiency of the solvent [128,129],... [Pg.523]

Distributions of relaxation or retardation times are useful and important both theoretically and practicably, because // can be calculated from /.. (and vice versa) and because from such distributions other types of viscoelastic properties can be calculated. For example, dynamic modulus data can be calculated from experimentally measured stress relaxation data via the resulting // spectrum, or H can be inverted to L, from which creep can be calculated. Alternatively, rather than going from one measured property function to the spectrum to a desired property function [e.g., Eft) — // In Schwarzl has presented a series of easy-to-use approximate equations, including estimated error limits, for converting from one property function to another (11). [Pg.72]

The dynamic mechanical thermal analyzer (DMTA) is an important tool for studying the structure-property relationships in polymer nanocomposites. DMTA essentially probes the relaxations in polymers, thereby providing a method to understand the mechanical behavior and the molecular structure of these materials under various conditions of stress and temperature. The dynamics of polymer chain relaxation or molecular mobility of polymer main chains and side chains is one of the factors that determine the viscoelastic properties of polymeric macromolecules. The temperature dependence of molecular mobility is characterized by different transitions in which a certain mode of chain motion occurs. A reduction of the tan 8 peak height, a shift of the peak position to higher temperatures, an extra hump or peak in the tan 8 curve above the glass transition temperature (Tg), and a relatively high value of the storage modulus often are reported in support of the dispersion process of the layered silicate. [Pg.109]

Summary In this chapter, a discussion of the viscoelastic properties of selected polymeric materials is performed. The basic concepts of viscoelasticity, dealing with the fact that polymers above glass-transition temperature exhibit high entropic elasticity, are described at beginner level. The analysis of stress-strain for some polymeric materials is shortly described. Dielectric and dynamic mechanical behavior of aliphatic, cyclic saturated and aromatic substituted poly(methacrylate)s is well explained. An interesting approach of the relaxational processes is presented under the experience of the authors in these polymeric systems. The viscoelastic behavior of poly(itaconate)s with mono- and disubstitutions and the effect of the substituents and the functional groups is extensively discussed. The behavior of viscoelastic behavior of different poly(thiocarbonate)s is also analyzed. [Pg.43]

Because all tissues are viscoelastic this means that their mechanical properties are time dependent and their behavior is characterized both by properties of elastic solids and those of viscous liquids. The classic method to characterize a viscoelastic material is to observe the decay of the stress required to hold a sample at a fixed strain (stress relaxation) or by the increasing strain required to hold a sample at a fixed stress (creep) as diagrammed in Figure 7.1 and explained further in Figure 7.2. Viscoelastic materials undergo processes that both store (elastic) and dissipate (viscous)... [Pg.181]

The derivation of fundamental linear viscoelastic properties from experimental data obtained in static and dynamic tests, and the relationships between these properties, are described by Barnes etal. (1989), Gunasekaran and Ak (2002) and Rao (1992). In the linear viscoelastic region, the moduli and viscosity coefficients from creep, stress relaxation and dynamic tests are interconvertible mathematically, and independent of the imposed stress or strain (Harnett, 1989). [Pg.760]

It is customary to use the expression viscoelastic deformations for all deformations that are not purely elastic. This means that viscoelasticity deals with a number of quite different phenomena. Literally the term viscoelastic means the combination of viscous and elastic properties. Examples are stress relaxation, creep and dynamic mechanical... [Pg.405]

It may be concluded that shape retention, wrinkle recovery and pleat and crease retention depend on well-known viscoelastic properties the existence of a transition range, stress relaxation, creep and permanent deformation, and a possible resilience by a change in external conditions. [Pg.880]


See other pages where Stress Relaxation Viscoelastic Properties is mentioned: [Pg.165]    [Pg.165]    [Pg.361]    [Pg.541]    [Pg.9]    [Pg.90]    [Pg.177]    [Pg.199]    [Pg.481]    [Pg.44]    [Pg.107]    [Pg.148]    [Pg.174]    [Pg.206]    [Pg.201]    [Pg.292]    [Pg.195]    [Pg.47]    [Pg.50]    [Pg.162]    [Pg.525]    [Pg.177]    [Pg.199]    [Pg.36]    [Pg.4]    [Pg.126]    [Pg.62]    [Pg.55]    [Pg.114]    [Pg.85]    [Pg.85]    [Pg.375]    [Pg.244]    [Pg.341]    [Pg.25]   


SEARCH



Relaxation properties

Relaxation viscoelastic

Relaxation viscoelastic properties

Stress properties

Viscoelastic properties

Viscoelastic stress

Viscoelasticity properties

Viscoelasticity stress relaxation

© 2024 chempedia.info