Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stoichiometry percent yield calculations

Example 10.4 shows how percent yield calculations can be combined with equation stoichiometry problems. [Pg.383]

The problem asks for a yield, so we identify this as a yield problem. In addition, we recognize this as a limiting reactant situation because we are given the masses of both starting materials. First, identify the limiting reactant by working with moles and stoichiometric coefficients then carry out standard stoichiometry calculations to determine the theoretical amount that could form. A table of amounts helps organize these calculations. Calculate the percent yield from the theoretical amount and the actual amount formed. [Pg.223]

Stoichiometry is the quantitative study of products and reactants in chemical reactions. Stoichiometric calculations are best done by expressing both the known and unknown quantities in terms of moles and then converting to other units if necessary. A limiting reagent is the reactant that is present in the smallest stoichiometric amount. It limits the amount of product that can be formed. The amount of product obtained in a reaction (the actual yield) may be less than the maximum possible amount (the theoretical yield). The ratio of the two is expressed as the percent yield. [Pg.98]

Chemical stoichiometry is the area of study that considers the quantities of materials in chemical formulas and equations. Quite simply, it is chemical arithmetic. The word itself is derived from stoicheion, the Greek word for element and metron, the Greek word for measure. When based on chemical formulas, stoichiometry is used to convert between mass and moles, to calculate the number of atoms, to calculate percent composition, and to interpret the mole ratios expressed in a chemical formula. Most topics in chemical arithmetic depend on the interpretation of balanced chemical equations. Mass/mole conversions, calculation of limiting reagent and percent yield, and various relationships among reactants and products are commonly included in this topic area. [Pg.21]

We can choose to make this a two-part problem. We are given the actual yield. The stoichiometry problem for finding MgO must be based on theoretical yield. What is our link between actual and theoretical yield Percent yield gives us the conversion factor 81.3 g (act)/100 g (theo). First we will find the theoretical yield from the actual yield then we will calculate the amount of reactant by stoichiometry. [Pg.279]

When you use stoichiometry to calculate the amount of product formed in a reaction, you are calculating the theoretical yield of the reaction. The theoretical yield is the amount of product that forms when all the limiting reactant reacts to form the desired product It is the maximum obtainable yield, predicted by the balanced equation. In practice, the actual yield— the amount of product actually obtained from a reaction—is almost always less than the theoretical yield. Th e are many reasons for the difference between the actual and theoretical yields. For instance, some of the reactants may not react to form the desired product. They may react to form different products, in something known as side reactions, or they may simply remain unreacted. In addition, it may be difficult to isolate and recover all the product at the end of the reaction. Chemists often determine the efficiency of a chemical reaction by calculating its percent yield, which tells what percentage the actual yield is of the theoretical yield. It is calculated as follows ... [Pg.96]

Other Practical Matters in Reaction Stoichiometry— Stoichiometric calculations sometimes involve additional factors, including the reaction s actual yield, the presence of by-products, and how the reaction or reactions proceed. For example, some reactions yield exactly the quantity of product calculated—the theoretical yield. When the actual yield equals the theoretical yield, the percent yield is 100%. In some reactions, the actual yield is less than the theoretical, in which case the percent yield is less than 100%. Lower yields may result from the formation of by-products, substances that replace some of the desired product because of reactions other than the one of interest, called side reactions. Some stoi-... [Pg.140]

It is a simple calculation based on the stoichiometry of the reaction, but does not account for solvents, reagents, reaction yield and reactant molar excess. Atom economy is one of the 12 principles of green chemistry [36]. The larger the number, the higher the percent of all reactants appearing in the product. [Pg.296]


See other pages where Stoichiometry percent yield calculations is mentioned: [Pg.139]    [Pg.280]   
See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Calculation percent yield

Percent yield

Stoichiometry calculations

Yield, calculation

© 2024 chempedia.info