Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stoichiometric equilibrium process

Our approach is to treat solvation as a stoichiometric equilibrium process. Let W symbolize water, M an organic cosolvent, and R the solute. Then we postulate the 2-step (3-state) system shown below. [Pg.283]

First, condensation polymerization of sugars and their derivatives is an equilibrium process (see, for example, equation 2), a nearly stoichiometric... [Pg.435]

E. The equilibrium constants for these equilibria are, respectively, Kle, Km, Keh, Kleh, and Kle/Klh- These models are termed stoichiometric because they use stoichiometric equilibrium constants instead of thermodynamic constants (see below) to describe the ion association process. [Pg.31]

Insertion of alkenes into Ru—H bonds is step in many Ru-catalyzed reactions of alkenes such as homogeneous hydrogenation. Stoichiometric formation of isolable cr-alkyl complexes is also observed. The reaction of ethylene with Ru hydrides such as RuHCl(PPh3)3 or RuH(OCOCF3)(PPh3)3 is an equilibrium process ... [Pg.52]

Oxygen-Rich versus Fuel-Rich Fires The distinction between an oxygen-rich or fuel-rich fire is used to describe the state of the fire relative to a nominal or stoichiometric combustion process. In the oxygen-rich state there is sufficient oxygen to allow for, theoretically, complete combustion of the available fuel. Remember that the combustion process is a series of competitive equilibrium chemical reactions therefore, it is fair to assume that not all of the intermediate products will be fully converted in the reaction chain. Growth of a fire in the oxygen-rich state is marked by direct heat transfer from the flame to the additional fuel supply. The exhaust gases mix readily with available fresh air and are cooled and diluted. [Pg.370]

The very general success of the phenomenological theory in quantitatively describing the composition dependence of many chemical and physical processes arises from the treatment of solvation effects by a stoichiometric equilibrium model. It is this model that pro-... [Pg.484]

For SNG manufacture, it is necessary to reduce the residual hydrogen to a minimum in order to achieve a high calorific value. This is best realized if the synthesis gas, instead of having a stoichiometric composition, contains a surplus of C02 which can be utilized to reduce the H2 content by the C02 methanation reaction to less than 1% according to equilibrium conditions. The surplus C02 must be removed at the end of the process sequence. It is, of course, also possible to operate a methanation plant with synthesis gas of stoichiometric composition then there is no need for a final C02 removal system. The residual H2 content will be higher, and therefore the heating value will be lower (cf. the two long term runs in Table II). [Pg.126]

In this exercise we shall estimate the influence of transport limitations when testing an ammonia catalyst such as that described in Exercise 5.1 by estimating the effectiveness factor e. We are aware that the radius of the catalyst particles is essential so the fused and reduced catalyst is crushed into small particles. A fraction with a narrow distribution of = 0.2 mm is used for the experiment. We shall assume that the particles are ideally spherical. The effective diffusion constant is not easily accessible but we assume that it is approximately a factor of 100 lower than the free diffusion, which is in the proximity of 0.4 cm s . A test is then made with a stoichiometric mixture of N2/H2 at 4 bar under the assumption that the process is far from equilibrium and first order in nitrogen. The reaction is planned to run at 600 K, and from fundamental studies on a single crystal the TOP is roughly 0.05 per iron atom in the surface. From Exercise 5.1 we utilize that 1 g of reduced catalyst has a volume of 0.2 cm g , that the pore volume constitutes 0.1 cm g and that the total surface area, which we will assume is the pore area, is 29 m g , and that of this is the 18 m g- is the pure iron Fe(lOO) surface. Note that there is some dispute as to which are the active sites on iron (a dispute that we disregard here). [Pg.430]

As equation 2.4.8 indicates, the equilibrium constant for a reaction is determined by the temperature and the standard Gibbs free energy change (AG°) for the process. The latter quantity in turn depends on temperature, the definitions of the standard states of the various components, and the stoichiometric coefficients of these species. Consequently, in assigning a numerical value to an equilibrium constant, one must be careful to specify the three parameters mentioned above in order to give meaning to this value. Once one has thus specified the point of reference, this value may be used to calculate the equilibrium composition of the mixture in the manner described in Sections 2.6 to 2.9. [Pg.10]

These levels are illustrated in Figure 1.1. Levels (1) and (2) are domains of kinetics in the sense that attention is focused on reaction (rate, mechanism, etc.), perhaps in conjunction with other rate processes, subject to stoichiometric and equilibrium constraints. At the other extreme, level (3) is the domain of CRE, because, in general, it is at this level that sufficient information about overall behavior is required to make decisions about reactors for, say, commercial production. Notwithstanding these comments, it is possible under certain ideal conditions at level (3) to make the required decisions based on information available only at level (1), or at levels (1) and (2) combined. The concepts relating to these ideal conditions are introduced in Chapter 2, and are used in subsequent chapters dealing with CRE. [Pg.2]

When several reactions occur simultaneously a degree of advancement is associated with each stoichiometric equation. Problem P4.01.26 is a application of this point. Some processes, for instance cracking of petroleum fractions, involve many substances. Then a correct number of independent stoichiometric equations must be formulated before equilibrium can be calculated. Another technique is to apply the principle that equilibrium is at a minimum of Gibbs free energy. This problem, however, is beyond the scope of this book. [Pg.259]

While the H20/CO ratio is crucial for the performance of LT WGS, it was particularly interesting to study the activity of catalysts at stoichiometric ratio and at H20/CO ratio of 3 1. Both are lower than those used in the commercial LT WGS processing of the gas exiting HT WGS. This was done deliberately for two reasons. The first is that there was no C02 present in the feed. Hence, the H20/CO ratio could be lower because there was no need to compensate the C02 influence on equilibrium with higher H20 concentration (due to reverse WGS reaction). The second reason was the intention to study the behavior of LT WGS catalysts at relatively low inlet CO concentration (0.5 vol%) with respect to the usual inlet CO concentrations used in the industrial process (1.5 to 3 vol%). The feed composition used here was similar to that reported in Refs. [45,46], except that the CO concentration and the H20/C0 ratio were lower. [Pg.207]


See other pages where Stoichiometric equilibrium process is mentioned: [Pg.220]    [Pg.401]    [Pg.728]    [Pg.727]    [Pg.369]    [Pg.978]    [Pg.1046]    [Pg.28]    [Pg.435]    [Pg.693]    [Pg.1497]    [Pg.122]    [Pg.396]    [Pg.518]    [Pg.61]    [Pg.12]    [Pg.217]    [Pg.82]    [Pg.1025]    [Pg.192]    [Pg.299]    [Pg.304]    [Pg.172]    [Pg.2]    [Pg.201]    [Pg.1]    [Pg.70]    [Pg.505]    [Pg.87]    [Pg.508]    [Pg.87]    [Pg.94]    [Pg.363]    [Pg.397]    [Pg.153]    [Pg.36]   
See also in sourсe #XX -- [ Pg.469 ]




SEARCH



Equilibrium process

Stoichiometric equilibrium

© 2024 chempedia.info