Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stimulation of neurotransmitter

The cellular consequences of neurotransmission can be both short term (acute) and long term (chronic). Acutely, stimulation of neurotransmitter receptors alters levels of intracellular signaling molecules, which may induce the neuron to fire or alter the responsiveness of the neuron to further stimulation. Over time, the persistent activation of receptors that occurs with... [Pg.33]

Iwasaki S, Kataoka M, Sekiguchi M et al (2000) Two distinct mechanisms underlie the stimulation of neurotransmitter release by phorbol esters in clonal rat pheochromocytoma PC 12 cells. J Biochem (Tokyo) 128 407-14... [Pg.251]

Maidhood L, Saith I, Hsiao TH, et al. 1985. Leptinotoxin-h action in synaptosomcs and neurosecretory cells Stimulation of neurotransmitter release. J Neurochem 45 1719-1730. [Pg.365]

An alternative approach to stimulate cholinergic function is to enhance the release of acetylcholine (ACh). Compounds such as the aminopyridines increase the release of neurotransmitters (148). The mechanism by which these compounds modulate the release of acetylcholine is likely the blockade of potassium channels. However, these agents increase both basal (release in the absence of a stimulus) and stimulus-evoked release (148). 4-Aminopyridine [504-24-5] was evaluated in a pilot study for its effects in AD and found to be mildly effective (149). [Pg.100]

Stimulation of the neuron lea ding to electrical activation of the nerve terminal in a physiologically relevant manner should eUcit a calcium-dependent release of the neurotransmitter. Although release is dependent on extracellular calcium, intracellular calcium homeostasis may also modulate the process. Neurotransmitter release that is independent of extracellular calcium is usually artifactual, or in some cases may represent release from a non-neuronal sources such as gha (3). [Pg.517]

In this lecture we will be concerned by exocytosis of neurotransmitters by chromaffin cells. These cells, located above kidneys, produce the adrenaline burst which induces fast body reactions they are used in neurosciences as standard models for the study of exocytosis by catecholaminergic neurons. Prior to exocytosis, adrenaline is contained at highly concentrated solutions into a polyelectrolyte gel matrix packed into small vesicles present in the cell cytoplasm and brought by the cytoskeleton near the cell outer membrane. Stimulation of the cell by divalent ions induces the fusion of the vesicles membrane with that of the cell and hence the release of the intravesicular content into the outer-cytoplasmic region. [Pg.10]

Adenosine is produced by many tissues, mainly as a byproduct of ATP breakdown. It is released from neurons, glia and other cells, possibly through the operation of the membrane transport system. Its rate of production varies with the functional state of the tissue and it may play a role as an autocrine or paracrine mediator (e.g. controlling blood flow). The uptake of adenosine is blocked by dipyridamole, which has vasodilatory effects. The effects of adenosine are mediated by a group of G protein-coupled receptors (the Gi/o-coupled Ai- and A3 receptors, and the Gs-coupled A2a-/A2B receptors). Ai receptors can mediate vasoconstriction, block of cardiac atrioventricular conduction and reduction of force of contraction, bronchoconstriction, and inhibition of neurotransmitter release. A2 receptors mediate vasodilatation and are involved in the stimulation of nociceptive afferent neurons. A3 receptors mediate the release of mediators from mast cells. Methylxanthines (e.g. caffeine) function as antagonists of Ai and A2 receptors. Adenosine itself is used to terminate supraventricular tachycardia by intravenous bolus injection. [Pg.19]

In 1954, experiments by Olds and Milner revealed that the brain has specialized centers for reward functions. In these studies electrical stimulation of certain brain sites was found to be highly rewarding in the sense that rats operantly respond for electrical stimulation of these brain sites, often to the exclusion of any other activity. A neurotransmitter system that is particularly sensitive to electrical self-stimulation is the mesolimbic dopamine projection that originates in the ventral tegmental area and projects to structures closely... [Pg.757]

As to be expected from a peptide that has been highly conserved during evolution, NPY has many effects, e.g. in the central and peripheral nervous system, in the cardiovascular, metabolic and reproductive system. Central effects include a potent stimulation of food intake and appetite control [2], anxiolytic effects, anti-seizure activity and various forms of neuroendocrine modulation. In the central and peripheral nervous system NPY receptors (mostly Y2 subtype) mediate prejunctional inhibition of neurotransmitter release. In the periphery NPY is a potent direct vasoconstrictor, and it potentiates vasoconstriction by other agents (mostly via Yi receptors) despite reductions of renal blood flow, NPY enhances diuresis and natriuresis. NPY can inhibit pancreatic insulin release and inhibit lipolysis in adipocytes. It also can regulate gut motility and gastrointestinal and renal epithelial secretion. [Pg.829]

The TCAs, such as amitriptyline (Elavil) and dox-epin (Sinequan), inhibit reuptake of norepinephrine or serotonin at the presynaptic neuron. Drug classified as MAOIs inhibit the activity of monoamine oxidase a complex enzyme system that is responsible for breaking down amines. This results in an increase in endogenous epinephrine, norepinephrine and serotonin in the nervous system. An increase in these neurohormones results in stimulation of the CNS. The action of the SSRIs is linked to their inhibition of CNS neuronal uptake of serotonin (a CNS neurotransmitter). The increase in serotonin levels is thought to act as a stimulant to reverse depression. [Pg.282]

Acetylcholinesterase is a component of the postsynaptic membrane of cholinergic synapses of the nervous system in both vertebrates and invertebrates. Its structure and function has been described in Chapter 10, Section 10.2.4. Its essential role in the postsynaptic membrane is hydrolysis of the neurotransmitter acetylcholine in order to terminate the stimulation of nicotinic and muscarinic receptors (Figure 16.2). Thus, inhibitors of the enzyme cause a buildup of acetylcholine in the synaptic cleft and consequent overstimulation of the receptors, leading to depolarization of the postsynaptic membrane and synaptic block. [Pg.299]

CTx that has been purified from muscles of Gymnothorax javanicus stimulates the release of neurotransmitters such as 7-aminobutyric acid and dopamine from rat brain nerve terminals. It causes a membrane depolarization of mouse neuroblastoma cells and, under appropriate conditions, it creates spontaneous oscillations of... [Pg.194]

While this chapter is concerned primarily with the neurochemical mechanisms which bring about and control impulse-evoked release of neurotransmitter, some of the methods used to measure transmitter release are described first. This is because important findings have emerged from studies of the effects of nerve stimulation on gross changes in transmitter release and intraneuronal stores. The actual processes that link neuronal excitation and release of transmitter from nerve terminals have been studied only relatively recently. The neurochemical basis of this stimulus-secretion coupling, which is still not fully understood, is described next. The final sections will deal with evidence that, under certain conditions, appreciable amounts of transmitter can be released through Ca +-independent mechanisms which do not depend on neuronal activation. [Pg.81]

Electrochemical techniques in vivo use the standard three electrode voltammetric system described earlier with the electrodes implanted in the brain of the animal subject. Measurements are made by acquiring some stable baseline signal and then stimulating release of the biogenic amine neurotransmitters. The change in signal is then a measure of the concentration of neurotransmitter in the extracellular fluid. [Pg.35]

Effects in Laboratory Animals. As highlighted in other chapters, the central toxicities during and after repeated stimulant bingeing may be related to neuronal or terminal destruction and/or depletion of neurotransmitter in the brain. In monkeys and cats, the report by Duarte-Escalante and Ellinwood (1970) of neuronal chromatolysis associated with decreased catecholamine histofluorescence following chronic METH intoxication has been followed by extensive neurochemical demonstrations of damage to the monoamine pathways by chronic stimulants (Seiden and Ricaurte 1987). [Pg.331]


See other pages where Stimulation of neurotransmitter is mentioned: [Pg.117]    [Pg.80]    [Pg.413]    [Pg.147]    [Pg.51]    [Pg.551]    [Pg.306]    [Pg.117]    [Pg.80]    [Pg.413]    [Pg.147]    [Pg.51]    [Pg.551]    [Pg.306]    [Pg.202]    [Pg.518]    [Pg.156]    [Pg.228]    [Pg.280]    [Pg.139]    [Pg.115]    [Pg.520]    [Pg.928]    [Pg.40]    [Pg.68]    [Pg.197]    [Pg.189]    [Pg.33]    [Pg.304]    [Pg.202]    [Pg.162]    [Pg.188]    [Pg.5]    [Pg.15]    [Pg.81]    [Pg.202]    [Pg.255]    [Pg.14]    [Pg.538]    [Pg.181]   


SEARCH



Stimulation of neurotransmitter release

© 2024 chempedia.info