Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereospecific reactions cyclopropanes from

A complicating factor associated with experimental application of the Skell Hypothesis is that triplet carbenes abstract hydrogen atoms from many olefins more rapidly than they add to them. Also, in general, the two cyclopropanes that can be formed are diastereomers, and thus there is no reason to expect that they will be formed from an intermediate with equal efficiency. To allay these problems, stereospecifically deuteriated a-methyl-styrene has been employed as a probe for the multiplicity of the reacting carbene. In this case, one bond formation from the triplet carbene is expected to be rapid since it generates a particularly well-stabilized 1,3-biradical. Also, the two cyclopropane isomers differ only in isotopic substitution and this is anticipated to have only a small effect on the efficiencies of their formation. The expected non-stereospecific reaction of the triplet carbene is shown in (15) and its stereospecific counterpart in (16). [Pg.330]

When each stereoisomeric reactant forms a different stereoisomeric product the reaction is known as stereospecific reaction. For example, the addition of CBr2 (dibromo-carbene, prepared from bromoform and base) to ds-2-butene gives cis-2,3-dimethyl-l,l-dibromocyclopropane (1.32), whereas addition of CBr2 to the trans-isomer exclusively yields the trans-cyclopropane 1.33. [Pg.15]

Carbene addition occurs in a syn fashion from either side of the planar double bond. The relative position of substituents in the alkene reactant is retained in the cyclopropane product. Carbene addition is thus a stereospecific reaction, since cis and trans alkenes yield different stereoisomers as products, as illustrated in Sample Problem 26.4. [Pg.1013]

Carbenes with coordination number 1, e.g., alkylidene carbenes. are not considered in this section. They are extensively described in Vol. E19b, p 84. Several examples demonstrate the stereospecificity of their [2 + 1] cycloaddilions to olefins. A few reactions which employ chiral olefins indicate that these are cyclopropanated from the sterically more accessible face (Vol. El9b. p 145). [Pg.978]

As reactions of carbenes in organic glasses were discussed in this and other sections of this chapter we close this section with a short reference to a very interesting review of Tomioka (1994) of which we became aware when this chapter was already submitted to the publisher. Tomioka emphasizes strongly a caveat against extrapolations from solution results and from liquid phase mechanistic rules to matrix conditions. This can be shown, for example, in the stereospecificity of cyclopropanations of insertion products into the allylic CH bonds of alkenes. Studying Tomioka s review is clearly a must for all chemists who work with carbenes in a matrix ... [Pg.344]

Until the last decade, product studies formed the main evidence for carbene formation singlet carbenes formed cyclopropanes from alkenes stereospecifically, while triplet carbenes formed cyclopropanes non-stereospecifically. Formation of a cyclopropane (though not by addition to an alkene) via a carbocation route was demonstrated and, more recently, it has been shown that p values for insertion-addition selectivity and for cyclopropanation stereoselectivity vary as to photochemical or thermal generation of the carbene. The authors of this latter study suggest that a ground state diazo compound could be masquerading as a carbene in its thermal reaction with olefins, possibly by electrocyclic... [Pg.548]

The Simmons-Smith reaction (Section 14.12) Methylene transfer from iodo-methylzinc iodide converts alkenes to cyclopropanes. The reaction is a stereospecific syn addition of a CH2 group to the double bond. [Pg.617]

If dichlorocarbene is generated in the presence of an alkene, addition to the double bond occurs and a dichlorocyclopropane is formed. As the reaction of dichlorocarbene with ds-2-pentene demonstrates, the addition is stereospecific, meaning that only a single stereoisomer is formed as product. Starting from a cis alkene, for instance, only cis-disubstituted cyclopropane is produced starting from a trans alkene, only trans-disubstituted cyclopropane is produced. [Pg.228]

Copper(II) triflate has also been used for the carbenoid cyclopropanation reaction of simple olefins like cyclohexene, 2-methylpropene, cis- or rran.y-2-butene and norbomene with vinyldiazomethane 2 26,27). Although the yields were low (20-38 %), this catalyst is far superior to other copper salts and chelates except for copper(II) hexafluoroacetylaeetonate [Cu(hfacac)2], which exhibits similar efficiency. However, highly nucleophilic vinyl ethers, such as dihydropyran and dihydrofuran cannot be cyclopropanated as they rapidly polymerize on contact with Cu(OTf)2. With these substrates, copper(II) trifluoroacetate or copper(II) hexafluoroacetylaeetonate have to be used. The vinylcyclopropanation is stereospecific with cis- and rra s-2-butene. The 7-vinylbicyclo[4.1.0]heptanes formed from cyclohexene are obtained with the same exo/endo ratio in both the Cu(OTf)2 and Cu(hfacac)2 catalyzed reaction. The... [Pg.80]

The photoelimination of nitrogen from 1-pyrazolines is one of the most thoroughly investigated photoreactions and it has been used extensively in the synthesis of cyclopropane derivatives.334 Both stereospecific and non-stereospedfic processes have been observed and these are believed, at least in simple 1-pyrazolines, to correspond to singlet and triplet excited states, respectively. Two reaction pathways have been proposed in the azoalkane 405335 direct excitation via a thermally activated S, state affords the C6H6 isomers 406 to 409, whereas triplet-sensitized excitation results in a tem-... [Pg.306]

The [5 + 2]-cycloadditions of tethered alkyne-VCPs that are 1,2-disubstituted on the cyclopropane ring 5j—1 have been studied and a mechanism has been advanced to explain the regio- and stereoselectivities of the reactions.37 In most cases, the product resulting from cleavage of the less-substituted (sterically less encumbered) carbon-carbon bond is obtained. The [5 + 2]-reaction is stereospecific in that a /ram-rclationship of the substituents on the cyclopropane leads to a m-relationship of the substituents in the product and vice versa (Equations (4) and (5)). For some tethered alkyne-VCPs which contain a functional group that weakens the carbon-carbon bond of the cyclopropane system, the more substituted (weaker) carbon-carbon bond can be cleaved selectively depending on the choice of catalyst. Thus far, the rhodium(l)-catalysts are more selective catalysts than the mthenium(0)-catalysts in the [5 + 2]-reaction of these substituted alkyne-VCPs (Scheme 7).38... [Pg.608]

Among methods of preparing optically active cyclopropane compounds, the Simmons-Smith reaction, first reported in 1958, is of significance. This reaction refers to the cyclopropanation of alkene with a reagent prepared in situ from a zinc-copper alloy and diiodomethane. The reaction is stereospecific with respect to the geometry of the alkene and is generally free from side reactions in contrast to reactions involving free carbenes. [Pg.319]

The reactions of these iron carbene reagents with alkenes to give cyclopropanes are stereospecific. They also exhibit high syn stereoselectivity in many cases. Optically active derivatives have been reported that have chiral ligands on iron or chiral alkoxy groups on the prospective caibene center and which have been resolved with the iron itself as a chiral center. Resulting from this work have been some highly enantioselective cyclopropanations. [Pg.980]

Cyclopropane formation occurs from reactions between diazo compounds and alkenes, catalyzed by a wide variety of transition-metal compounds [7-9], that involve the addition of a carbene entity to a C-C double bond. This transformation is stereospecific and generally occurs with electron-rich alkenes, including substituted olefins, dienes, and vinyl ethers, but not a,(J-unsaturated carbonyl compounds or nitriles [23,24], Relative reactivities portray a highly electrophilic intermediate and an early transition state for cyclopropanation reactions [15,25], accounting in part for the relative difficulty in controlling selectivity. For intermolecular reactions, the formation of geometrical isomers, regioisomers from reactions with dienes, and enantiomers must all be taken into account. [Pg.195]

A widely exploited procedure for bringing about carbenoid reactions of organic mono- and fifem-dihalides is by use of lithium alkyls. Examples are given in equations (11) and (12). Dimeric olefin formation, stereospecific cyclopropane formation from olefins, and insertion into carbon-hydrogen bonds have all been observed in suitable cases, together with further reactions of these products with excess of the lithium alkyl. [Pg.181]

Cyclopropanation reactions of nonheteroatom-stabilized carbenes have also been developed. The most versatile are the cationic iron carbenes that cyclopropanate alkenes with high stereospecificity under very mild reaction conditions. The cyclopropanation reagents are available from a number of iron complexes, for example, (9-alkylation of cyclopentadienyl dicarbonyliron alkyl or acyl complexes using Meerwein salts affords cationic Fischer carbenes. Cationic iron carbene intermediates can also be prepared by reaction of CpFe(CO)2 with aldehydes followed by treatment with TMS-chloride. Chiral intermolecular cyclopropanation using a chiral iron carbene having a complexed chromium tricarbonyl unit is observed (Scheme 61). [Pg.3230]


See other pages where Stereospecific reactions cyclopropanes from is mentioned: [Pg.262]    [Pg.188]    [Pg.188]    [Pg.704]    [Pg.22]    [Pg.88]    [Pg.87]    [Pg.335]    [Pg.127]    [Pg.79]    [Pg.118]    [Pg.1226]    [Pg.592]    [Pg.431]    [Pg.245]    [Pg.5]    [Pg.207]    [Pg.451]    [Pg.572]    [Pg.390]    [Pg.280]    [Pg.280]    [Pg.692]    [Pg.712]    [Pg.416]    [Pg.280]    [Pg.280]    [Pg.692]    [Pg.621]   


SEARCH



Cyclopropanation reaction

Cyclopropanes reaction

Reaction stereospecificities

Stereospecific reactions

Stereospecificity cyclopropanations

© 2024 chempedia.info