Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereogenic centers substitution reaction

With established reaction parameters, this tandem process offered the facile synthesis of a range of substituted thiochromanes bearing three stereogenic centers. The reaction was reported to be high-yielding (75-97%) and produced the respective products 1-8 in excellent ee values (91-99%) as well as in very... [Pg.273]

Further evidence for a bromine-bridged radical comes from radical substitution of optically active 2-bromobutane. Most of the 2,3-dibromobutane which is formed is racemic, indicating that the stereogenic center is involved in the reaction. A bridged intermediate that can react at either carbon can explain the racemization. When the 3-deuterated reagent is used, it can be shown that the hydrogen (or deuterium) that is abstracted is replaced by bromine with retention of stereochemistry These results are also consistent with a bridged bromine radical. [Pg.709]

Conjugate addition reactions of acyclic Midiael acceptors possessing betetoatom-SLibstituted stereogenic centers in tlieir )>-positions may provide usefiil levels of diastereoselectivity. A typical example is given witli tlie y-alkoxy-substituted enoate 49 in Sdieme 6.8 [17]. High levels of diastereoselectivity in favor of tlie anii addition product SO were found in tlie course of dlmediylcuprate addition. [Pg.192]

The Diels-Alder reaction of a diene with a substituted olefinic dienophile, e.g. 2, 4, 8, or 12, can go through two geometrically different transition states. With a diene that bears a substituent as a stereochemical marker (any substituent other than hydrogen deuterium will suffice ) at C-1 (e.g. 11a) or substituents at C-1 and C-4 (e.g. 5, 6, 7), the two different transition states lead to diastereomeric products, which differ in the relative configuration at the stereogenic centers connected by the newly formed cr-bonds. The respective transition state as well as the resulting product is termed with the prefix endo or exo. For example, when cyclopentadiene 5 is treated with acrylic acid 15, the cw fo-product 16 and the exo-product 17 can be formed. Formation of the cw fo-product 16 is kinetically favored by secondary orbital interactions (endo rule or Alder rule) Under kinetically controlled conditions it is the major product, and the thermodynamically more stable cxo-product 17 is formed in minor amounts only. [Pg.91]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

With a-alkyl-substituted chiral carbonyl compounds bearing an alkoxy group in the -position, the diastereoselectivity of nucleophilic addition reactions is influenced not only by steric factors, which can be described by the models of Cram and Felkin (see Section 1.3.1.1.), but also by a possible coordination of the nucleophile counterion with the /J-oxygen atom. Thus, coordination of the metal cation with the carbonyl oxygen and the /J-alkoxy substituent leads to a chelated transition state 1 which implies attack of the nucleophile from the least hindered side, opposite to the pseudoequatorial substituent R1. Therefore, the anb-diastereomer 2 should be formed in excess. With respect to the stereogenic center in the a-position, the predominant formation of the anft-diastereomer means that anti-Cram selectivity has occurred. [Pg.36]

The addition of dibutylcupratc to the a-substituted /1-formyl esters 1 preferentially affords, via chelation control, the cw-disubstituted y-lactone 241. These results are in agreement with those found with a-unsubstituted /1-esters39-41 (vide supra), assuming a seven-membered chelate as transition state of the addition reaction. The diastercosclectivity is somewhat lower with esters 1 as the stereogenic center is one carbon atom further removed from the reaction center and therefore the steric influence of the substituent R1 is less pronounced. [Pg.45]

The diastereofacial selectivity of Lewis acid promoted reactions of allylsilancs with chiral aldehydes has been thoroughly investigated58. Aldehydes with alkyl substituted a-stereogenic centers react with a mild preference for the formation of Cram products, this preference being enhanced by the use of boron trifluoride-diethyl ether complex as catalyst58. [Pg.348]

If the enone is part of a decalone system, i.e., a / - and an y-substituent are present, on reaction with lithiated areneacetonitriles in THF the exclusive formation of (Tv-substituted decalones is observedl26. The diastereoselectivity at the exocyclic stereogenic center is, however, poor. Applications in the synthesis of anthracyclines are given in the literature127,12S. [Pg.967]

The reaction of the stabilized yUde 46 (a-vinyl substituted) with the cycloocta-dienyl Pd(II) allows the synthesis of a novel complex, the (rj -allyl)palladium 47, in which the olefmic double bond participates in the coordination (Scheme 20) [83]. The coordination of the bis-yUde 48 with the same starting Cl2Pd(COD) leads to the formation of another new palladium complex 49 via COD exchange reactions. A C-coordination mode takes place between the carbanionic centers of the bis-ylide and the soft palladium and two stereogenic centers of the same configuration are thus created [83]. In contrast to the example described in Scheme 19, the Cl2M(COD) (M=Pd or Pt), in presence of a slightly different car-... [Pg.56]

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

Krische and coworkers [44] developed a Rh-catalyzed asymmetric domino Michael/aldol reaction for the synthesis of substituted cyclopentanols and cyclohex-anols. In this process, three contiguous stereogenic centers, including a quaternary center, are formed with excellent diastereo- and enantioselectivity. Thus, using an enantiopure Rh-BINAP catalyst system and phenyl boronic acid, substrates 2-108 are converted into the correspondding cyclized products 2-109 in 69-88% yield and with 94 and 95% ee, respectively (Scheme 2.24). [Pg.63]

The effects of the allylic substituent, the alkene geometry, and the diene substitution as well as the influence of resident stereogenic centers incorporated in the tether connecting the 1,3-diene and the alkene subunits were totally investigated. This process has been applied to the reactions of more elaborated systems including heterocyclic structures,367 and the total synthesis of (—)-gibboside.368... [Pg.350]

Generally speaking, since the a-carbon of a substituted allylic fragment is a stereogenic center, chirality may be transferred to the carbonyl compounds. Thus, very high diaste-reofacial selectivity has been obtained in the reaction of 32 with isopropyl methyl ketone due to a rigid transition state (Scheme 13.26) [54]. [Pg.466]

In the enantioselective synthesis, the asymmetry (i.e., the stereoselectivity) is induced by the external chiral catalyst, while the diastereoselective synthesis does not require a chiral catalyst. The stereogenic center already present in the molecule is able to induce stereoselectivity, assuming that the synthesis starts with a single enantiomer. For instance, imagine that an a,/ -substituted product is formed, and that the reactant already contains a stereogenic carbon at a. If the reaction of (aS) leads, e.g., largely to (aS, / R) and hardly to the (aS, /IS) diastereomer (i.e., stereoisomers that are not mirror-images of each other), the reaction is diastereoselective (Scheme 14.2). [Pg.497]


See other pages where Stereogenic centers substitution reaction is mentioned: [Pg.97]    [Pg.88]    [Pg.108]    [Pg.174]    [Pg.287]    [Pg.290]    [Pg.382]    [Pg.392]    [Pg.533]    [Pg.2]    [Pg.29]    [Pg.86]    [Pg.442]    [Pg.198]    [Pg.190]    [Pg.193]    [Pg.146]    [Pg.137]    [Pg.154]    [Pg.47]    [Pg.152]    [Pg.27]    [Pg.114]    [Pg.144]    [Pg.239]    [Pg.321]    [Pg.657]    [Pg.638]    [Pg.798]    [Pg.378]    [Pg.50]    [Pg.55]    [Pg.421]    [Pg.193]    [Pg.201]    [Pg.220]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Reaction center

Reaction stereogenic

Stereogenic center

© 2024 chempedia.info