Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereochemistry enolate reactions

Many enolates can exist as both E- and Z-isomers.11 The synthetic importance of LDA and HMDS deprotonation has led to studies of enolate stereochemistry under various conditions. In particular, the stereochemistry of some enolate reactions depends on whether the E- or Z-isomer is involved. Deprotonation of 2-pentanone was examined with LDA in THF, with and without HMPA. C(l) deprotonation is favored under both conditions, but the Z.E ratio for C(3) deprotonation is sensitive to the presence of HMPA.12 More Z-enolate is formed when HMPA is present. [Pg.9]

Stereochemical Control Through Reaction Conditions. In the early 1990s it was found that the stereochemistry of reactions of boron enolates of N-acyloxazolidinones can be altered by using a Lewis acid complex of the aldehyde or an excess of the Lewis acid. These reactions are considered to take place through an open TS, with the stereoselectivity dependent on the steric demands of the Lewis acid. With various aldehydes, TiCl4 gave a syn isomer, whereas the reaction was... [Pg.119]

Aldol addition and related reactions of enolates and enolate equivalents are the subject of the first part of Chapter 2. These reactions provide powerful methods for controlling the stereochemistry in reactions that form hydroxyl- and methyl-substituted structures, such as those found in many antibiotics. We will see how the choice of the nucleophile, the other reagents (such as Lewis acids), and adjustment of reaction conditions can be used to control stereochemistry. We discuss the role of open, cyclic, and chelated transition structures in determining stereochemistry, and will also see how chiral auxiliaries and chiral catalysts can control the enantiose-lectivity of these reactions. Intramolecular aldol reactions, including the Robinson annulation are discussed. Other reactions included in Chapter 2 include Mannich, carbon acylation, and olefination reactions. The reactivity of other carbon nucleophiles including phosphonium ylides, phosphonate carbanions, sulfone anions, sulfonium ylides, and sulfoxonium ylides are also considered. [Pg.1334]

The stereochemistry of enolate alkylation follows the general rule governing the stereochemistry of reactions an achiral starting material yields an achiral or racemic product. For example, when cyclohexanone (an achiral starting material) is converted to 2-ethylcyclohexanone by treatment with base and CH3CH2I, a new stereogenic center is introduced, and both enantiomers of the product are formed in equal amounts—that is, a racemic mixture. [Pg.900]

The interpretation of the observed stereochemistry in reactions of carbohydrate ester enolates 3,7 and 12 in terms of a guidance of the electrophile by the lithium ion is also supported by results obtained in... [Pg.192]

Much tvork in the field of aldol reactions of ketones tvas performed by Evans to enable the synthesis of polypropionate natural products. They demonstrated that j5-ketoimides like 159 vere selectively and completely enolized at the C4 position rather than the potentially labile methyl-bearing C2 position, most probably because steric factors prohibited alignment of the carbonyl groups necessary to activate the C2 proton. As sho vn in Table 2.29, it vas demonstrated that these compounds vould react vith aldehydes to provide syn-syn product 161, via titanium enolates, vith good yield and excellent selectivity, and the corresponding syn-anti product 162 could be favored by use of a tin enolate reaction [58]. They invoked the chelated transition state assembly 160 to explain the product stereochemistry observed, in vhich the C2-methyl group directs diastereofacial selectivity. Interestingly, reduction vith Zn(BH4)2 provided the syn diol diastereoselec-tively. [Pg.96]

Mechanism of Enolate Alkylation SN2 reaction, inversion of electrophile stereochemistry... [Pg.75]

A useful catalyst for asymmetric aldol additions is prepared in situ from mono-0> 2,6-diisopropoxybenzoyl)tartaric acid and BH3 -THF complex in propionitrile solution at 0 C. Aldol reactions of ketone enol silyl ethers with aldehydes were promoted by 20 mol % of this catalyst solution. The relative stereochemistry of the major adducts was assigned as Fischer- /ir o, and predominant /i -face attack of enol ethers at the aldehyde carbonyl carbon atom was found with the (/ ,/ ) nantiomer of the tartaric acid catalyst (K. Furuta, 1991). [Pg.61]

Stereoselectivities of 99% are also obtained by Mukaiyama type aldol reactions (cf. p. 58) of the titanium enolate of Masamune s chired a-silyloxy ketone with aldehydes. An excess of titanium reagent (s 2 mol) must be used to prevent interference by the lithium salt formed, when the titanium enolate is generated via the lithium enolate (C. Siegel, 1989). The mechanism and the stereochemistry are the same as with the boron enolate. [Pg.62]

It was claimed that the Z-form of the allylic acetate 430 was retained in homoallylic ketone 431 obtained by reaction with the potassium enolate of 3-vinylcyclopentanone (429), after treatment with triethylborane[282]. Usually this is not possible. The reaction of a (Z)-allylic chloride with an alkenylaluminum reagent to give 1,4-dienes proceeds with retention of the stereochemistry to a considerable extent when it is carried out at -70 C[283]. [Pg.348]

The formation of g-alkyl-a,g-unsaturated esters by reaction of lithium dialkylcuprates or Grignard reagents in the presence of copper(I) iodide, with g-phenylthio-, > g-acetoxy-g-chloro-, and g-phosphoryloxy-a,g-unsaturated esters has been reported. The principal advantage of the enol phosphate method is the ease and efficiency with which these compounds may be prepared from g-keto esters. A wide variety of cyclic and acyclic g-alkyl-a,g-unsaturated esters has been synthesized from the corresponding g-keto esters. However, the method is limited to primary dialkylcuprates. Acyclic g-keto esters afford (Zl-enol phosphates which undergo stereoselective substitution with lithium dialkylcuprates with predominant retention of stereochemistry (usually > 85-98i )). It is essential that the cuprate coupling reaction of the acyclic enol phosphates be carried out at lower temperatures (-47 to -9a°C) to achieve high stereoselectivity. When combined with they-... [Pg.21]

Although ethereal solutions of methyl lithium may be prepared by the reaction of lithium wire with either methyl iodide or methyl bromide in ether solution, the molar equivalent of lithium iodide or lithium bromide formed in these reactions remains in solution and forms, in part, a complex with the methyllithium. Certain of the ethereal solutions of methyl 1ithium currently marketed by several suppliers including Alfa Products, Morton/Thiokol, Inc., Aldrich Chemical Company, and Lithium Corporation of America, Inc., have been prepared from methyl bromide and contain a full molar equivalent of lithium bromide. In several applications such as the use of methyllithium to prepare lithium dimethyl cuprate or the use of methyllithium in 1,2-dimethyoxyethane to prepare lithium enolates from enol acetates or triraethyl silyl enol ethers, the presence of this lithium salt interferes with the titration and use of methyllithium. There is also evidence which indicates that the stereochemistry observed during addition of methyllithium to carbonyl compounds may be influenced significantly by the presence of a lithium salt in the reaction solution. For these reasons it is often desirable to have ethereal solutions... [Pg.106]

The alkylation reactions of enolate anions of both ketones and esters have been extensively utilized in synthesis. Both very stable enolates, such as those derived from (i-ketoesters, / -diketones, and malonate esters, as well as less stable enolates of monofunctional ketones, esters, nitriles, etc., are reactive. Many aspects of the relationships between reactivity, stereochemistry, and mechanism have been clarified. A starting point for the discussion of these reactions is the structure of the enolates. Because of the delocalized nature of enolates, an electrophile can attack either at oxygen or at carbon. [Pg.435]

The first three chapters discuss fundamental bonding theory, stereochemistry, and conformation, respectively. Chapter 4 discusses the means of study and description of reaction mechanisms. Chapter 9 focuses on aromaticity and aromatic stabilization and can be used at an earlier stage of a course if an instructor desires to do so. The other chapters discuss specific mechanistic types, including nucleophilic substitution, polar additions and eliminations, carbon acids and enolates, carbonyl chemistry, aromatic substitution, concerted reactions, free-radical reactions, and photochemistry. [Pg.830]

Addition of hydride ion from the catalyst gives the adsorbed dianion (15). The reaction is completed and product stereochemistry determined by protonation of these species from the solution prior to or concurrent with desorption. With the heteroannular enolate, (13a), both cis and trans adsorption can occur with nearly equal facility. When an angular methyl group is present trans adsorption (14b) predominates. Protonation of the latter species from the solution gives the cis product. Since the heteroannular enolate is formed by the reaction of A" -3-keto steroids with strong base " this mechanism satisfactorily accounts for the almost exclusive formation of the isomer on hydrogenation of these steroids in basic media. The optimum concentration of hydroxide ion in this reaction is about two to three times that of the substrate. [Pg.116]

Scheme 5 details the asymmetric synthesis of dimethylhydrazone 14. The synthesis of this fragment commences with an Evans asymmetric aldol condensation between the boron enolate derived from 21 and trans-2-pentenal (20). Syn aldol adduct 29 is obtained in diastereomerically pure form through a process which defines both the relative and absolute stereochemistry of the newly generated stereogenic centers at carbons 29 and 30 (92 % yield). After reductive removal of the chiral auxiliary, selective silylation of the primary alcohol furnishes 30 in 71 % overall yield. The method employed to achieve the reduction of the C-28 carbonyl is interesting and worthy of comment. The reaction between tri-n-butylbor-... [Pg.492]

The Ireland-Claisen reaction of ( )-vinylsilanes has been applied to the stereoselective synthesis of syn- and c/nti-2-substituted 3-silyl alkcnoic acids. a R-2-Alkyl-3-silyl acids are prepared by rearrangement of ( )-silyl ketene acetals which are generated in situ from the kinetically formed (Z)-enolate of the corresponding propionate ester40. Chelation directs the stereochemistry of enolization of heteroelement-substituted acetates in such a way that the syn-diastereomers are invariably formed on rearrangement403. [Pg.345]

In the course of investigations on the synthesis of ( + )-biotin (7) the addition of isothiocyana-toacetate enolates 8 to 1,3-thiazolines 9 has been studied16 17. The diastereofacial selectivity of these reactions is controlled by attack of the enolate on the imine face opposite the 5-pentyl group and correctly establishes the relative stereochemistry at C-l and C-2 of biotin. [Pg.765]

Excellent chemical yields, high regio- and, in several cases, high diastereoselectivities are observed. A correlation between enolate geometry and product stereochemistry is found, with (Z)-eno-lates producing ////// -adducts and (L )-cnolates yielding. vvw-adducts preferentially, if these reactions are performed with kinetic control (see Table 1, entries 1 -10)21 -23. [Pg.957]

Addition of ( )-enolates to ( )-l-nitropropene favors products with the syn stereochemistry while products with the anti stereochemistry are favored from the reaction of ( )-enolates with (Z)-1 -nitropropene. [Pg.1011]


See other pages where Stereochemistry enolate reactions is mentioned: [Pg.217]    [Pg.647]    [Pg.217]    [Pg.373]    [Pg.647]    [Pg.161]    [Pg.237]    [Pg.287]    [Pg.82]    [Pg.510]    [Pg.6362]    [Pg.29]    [Pg.231]    [Pg.636]    [Pg.1127]    [Pg.591]    [Pg.735]    [Pg.6]    [Pg.114]    [Pg.261]    [Pg.310]    [Pg.118]    [Pg.458]    [Pg.499]    [Pg.603]    [Pg.613]    [Pg.263]   
See also in sourсe #XX -- [ Pg.636 ]




SEARCH



Enolates stereochemistry

Reaction stereochemistry

© 2024 chempedia.info