Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Step poly

The two-step poly(amic acid) process is the most commonly practiced procedure. In this process, a dianhydride and a diamine react at ambient temperature in a dipolar aprotic solvent such as /V,/V-dimethy1 acetamide [127-19-5] (DMAc) or /V-methy1pyrro1idinone [872-50-4] (NMP) to form apoly(amic acid), which is then cycHzed into the polyimide product. The reaction of pyromeUitic dianhydride [26265-89-4] (PMDA) and 4,4 -oxydiani1ine [101-80-4] (ODA) proceeds rapidly at room temperature to form a viscous solution of poly(amic acid) (5), which is an ortho-carboxylated aromatic polyamide. [Pg.396]

Auxiliary agents binders are needed in prepregging step (poly imide is an example of such binder) ... [Pg.642]

Danion et al. immobilized intact liposomes onto SCLs (Figure 51.11). In the first step, poly-ethylenimine was covalently bounded onto the hydroxyl groups available on the surface of a commercial CL (Hioxifilcon B). Then, NHS-PEG-biotin molecules were bounded onto the surface amine groups by carbodiimide chemistry. NeutrAvidin were bounded onto the PEG-biotin layer. Liposomes containing PEG-biotinylated lipids were docked onto the surface-immobilized NeutrAvidin. Consecutive addition of further NeutrAvidin and liposome layers enabled the fabrication of multilayers. Multilayers of liposomes were also produced by exposing CLs coated with NeutrAvidin to liposome aggregates produced by the addition of free biotin in solution. [Pg.1188]

Fig. 2 Illustration of the steps involved in preparation of RNA-Seq libraries. Total RNA from either eukaryotic or prokaryotic sources may be used thus, as illustrated for the first step, poly(A) enrichment or rRNA depletion may be used to process the RNA before fragmentation and cDNA synthesis... Fig. 2 Illustration of the steps involved in preparation of RNA-Seq libraries. Total RNA from either eukaryotic or prokaryotic sources may be used thus, as illustrated for the first step, poly(A) enrichment or rRNA depletion may be used to process the RNA before fragmentation and cDNA synthesis...
Figure 18.15 shows the schematic of the fabrication process. After oxidation of the double-side polished silicon substrate wafer, a first lower poly-Si layer with a thickness of 45 pm is deposited by means of an epi-poly process. In order to remove spikes and obtain a smooth surface, 5 pm of poly-Si has to be removed by poly-Si CMP. This polishing is a two-step process, consisting of a 5 pm bulk removal by means of a fiimed-silica slurry and a subsequent final polish of several 10 nm with a haze-firee slurry. After deposition and stmcturing of some intermediate layers, a second upper poly-Si layer, again with a thickness of 45 pm, is deposited and subsequendy polished with the same two-step poly-Si CMP process. As this will be the surface of the evaporated silver mirror, a smooth as well as flat surface has to be achieved. After a backside silicon etch and the removal of the sacrificial layer, the scanning mirror device is released, see Figure 18.16(a) and (b). [Pg.478]

The simplest condensed phase VER system is a dilute solution of a diatomic in an atomic (e.g. Ar or Xe) liquid or crystal. Other simple systems include neat diatomic liquids or crystals, or a diatomic molecule bound to a surface. A major step up in complexity occurs with poly atomics, with several vibrations on the same molecule. This feature guarantees enonnous qualitative differences between diatomic and polyatomic VER, and casts doubt on the likelihood of understanding poly atomics by studying diatomics alone. [Pg.3034]

Polymerization of styrene is carried out under free radical conditions often with benzoyl peroxide as the initiator Figure 1111 illustrates a step m the growth of a poly styrene chain by a mechanism analogous to that of the polymerization of ethylene (Sec tion 6 21)... [Pg.449]

The polymer described in the last problem is commercially called poly (phenylene oxide), which is not a proper name for a molecule with this structure. Propose a more correct name. Use the results of the last problem to criticize or defend the following proposition The experimental data for dimer polymerization can be understood if it is assumed that one molecule of water and one molecule of monomer may split out in the condensation step. Steps involving incorporation of the monomer itself (with only water split out) also occur. [Pg.341]

Cationic monomers are used to enhance adsorption on waste soHds and faciHtate flocculation (31). One of the first used in water treatment processes (10) is obtained by the cyclization of dimethyldiallylammonium chloride in 60—70 wt % aqueous solution (43) (see Water). Another cationic water-soluble polymer, poly(dimethylarnine-fi9-epichlorohydrin) (11), prepared by the step-growth... [Pg.318]

HydrophobicaHy Modified, Ethoxylated Urethane. HEUR associative thickeners are in effect poly(oxyethylene) polymers that contain terminal hydrophobe units (66). They can be synthesized via esterification with monoacids, tosylation reactions, or direct reaction with monoisocyanates. There are problems associated with aH of the methods of synthesis. The general commercial procedure for their synthesis is by a step-growth addition of... [Pg.321]

VDP Polyimides. Polyimide films have also been prepared by a kind of VDP (16). The poly(amic acid) layer is first formed by the coevaporation and condensation of two monomers, followed by copolymerization on the substrate. The imidization is carried out in a separate baking step (see POLYIMIDES). [Pg.430]

The beater additive process starts with a very dilute aqueous slurry of fibrous nitrocellulose, kraft process woodpulp, and a stabilizer such as diphenylamine in a felting tank. A solution of resin such as poly(vinyl acetate) is added to the slurry of these components. The next step, felting, involves use of a fine metal screen in the shape of the inner dimensions of the final molded part. The screen is lowered into the slurry. A vacuum is appHed which causes the fibrous materials to be deposited on the form. The form is pulled out after a required thickness of felt is deposited, and the wet, low density felt removed from the form. The felt is then molded in a matched metal mold by the appHcation of heat and pressure which serves to remove moisture, set the resin, and press the fibers into near final shape (180—182). [Pg.53]

In conventional tenter orientation, the sequence of steps is as described above (MD—TD). In some cases it is advantageous to reverse the draw order (TD—MD) or to use multiple draw steps, eg, MD—TD—MD. These other techniques are used to produce "tensilized" films, where the MD tensile properties are enhanced by further stretching. The films are generally unbalanced in properties and in extreme cases may be fibrillated to give fiber-like elements for special textile appHcations. Tensilized poly(ethylene terephthalate) is a common substrate for audio and video magnetic tape and thermal transfer tape. [Pg.381]

Synthesis and Properties. Several methods have been suggested to synthesize polyimides. The predominant one involves a two-step condensation reaction between aromatic diamines and aromatic dianhydrides in polar aprotic solvents (2,3). In the first step, a soluble, linear poly(amic acid) results, which in the second step undergoes cyclodehydration, leading to an insoluble and infusible PL Overall yields are generally only 70—80%. [Pg.530]

Applications. Polymers with small alkyl substituents, particularly (13), are ideal candidates for elastomer formulation because of quite low temperature flexibiUty, hydrolytic and chemical stabiUty, and high temperature stabiUty. The abiUty to readily incorporate other substituents (ia addition to methyl), particularly vinyl groups, should provide for conventional cure sites. In light of the biocompatibiUty of polysdoxanes and P—O- and P—N-substituted polyphosphazenes, poly(alkyl/arylphosphazenes) are also likely to be biocompatible polymers. Therefore, biomedical appHcations can also be envisaged for (3). A third potential appHcation is ia the area of soHd-state batteries. The first steps toward ionic conductivity have been observed with polymers (13) and (15) using lithium and silver salts (78). [Pg.260]


See other pages where Step poly is mentioned: [Pg.396]    [Pg.396]    [Pg.265]    [Pg.147]    [Pg.42]    [Pg.6]    [Pg.175]    [Pg.260]    [Pg.120]    [Pg.10]    [Pg.277]    [Pg.396]    [Pg.396]    [Pg.265]    [Pg.147]    [Pg.42]    [Pg.6]    [Pg.175]    [Pg.260]    [Pg.120]    [Pg.10]    [Pg.277]    [Pg.2625]    [Pg.2888]    [Pg.1142]    [Pg.1186]    [Pg.14]    [Pg.68]    [Pg.123]    [Pg.316]    [Pg.316]    [Pg.316]    [Pg.442]    [Pg.307]    [Pg.382]    [Pg.532]    [Pg.149]    [Pg.239]    [Pg.525]    [Pg.526]    [Pg.245]    [Pg.256]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Poly polymerization termination step

Poly step-growth

Poly step-growth syntheses

Step-growth polymerization poly(phenylene

© 2024 chempedia.info