Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stem constants

Let us suppose the kinetic eneigy of the i stem constantly n ligible, which is ordinarily true for the changes of state that the chemist studies equation (17), in which now FFo" 0, Wi O, gives... [Pg.97]

Tlere, y Is the friction coefficien t of the solven t. In units of ps, and Rj is th e random force im parted to th e solute atom s by the solvent. The friction coefficien t is related to the diffusion constant D oflh e solven l by Em stem T relation y = k jT/m D. Th e ran doin force is calculated as a ratulom number, taken from a Gaussian distribn-... [Pg.91]

Meihylamine hydrochloride method. Place 100 g. of 24 per cent, methyl-amine solution (6) in a tared 500 ml. flask and add concentrated hydrochloric acid (about 78 ml.) until the solution is acid to methyl red. Add water to bring the total weight to 250 g., then introduce lSO g. of urea, and boil the solution gently under reflux for two and three-quarter hours, and then vigorously for 15 minutes. Cool the solution to room temperature, dissolve 55 g. of 95 per cent, sodium nitrite in it, and cool to 0°. Prepare a mixture of 300 g. of crushed ice and 50 g. of concentrated sulphuric acid in a 1500 ml. beaker surrounded by a bath of ice and salt, and add the cold methylurea - nitrite solution slowly and with mechanical stirring and at such a rate (about 1 hour) that the temperature does not rise above 0°. It is recommended that the stem of the funnel containii the methylurea - nitrite solution dip below the surface of the acid solution. The nitrosomethylurea rises to the surface as a crystalline foamy precipitate. Filter at once at the pump, and drain well. Stir the crystals into a paste with about 50 ml. of cold water, suck as dry as possible, and dry in a vacuum desiccator to constant weight. The yield is 55 g. (5). [Pg.969]

IgG antibody molecules are composed of two light chains and two heavy chains joined together by disulfide bonds. Each light chain has one variable domain and one constant domain, while each heavy chain has one variable and three constant domains. All of the domains have a similar three-dimensional structure known as the immunoglobulin fold. The Fc stem of the molecule is formed by constant domains from each of the heavy chains, while two Fab arms are formed by constant and variable domains from both heavy and light chains. The hinge region between the stem and the arms is flexible and allows the arms to move relative to each other and to the stem. [Pg.320]

These results seemed to establish with certainty that the active component of tube curare is derived from Chondrodendron tomentosum, but the matter again became doubtful when King reported that in the stems of a carefully authenticated specimen of the plant, collected at Tarapoto in Peru, he had found 1-curine and Z-tubocurarine chloride. This is the first recorded natural occurrence of the latter and seems to indicate either that the alkaloidal components of the plant are not constant in character, or that the botanical description of Chondrodendron tomentosum covers two species containing the dextro- and Icevo- quaternary alkaloids respectively. [Pg.377]

In order to clear up the mechanism of inactivation of excited states, we examined the processes of quenching of fluorescence and phosphorescence in PCSs by the additives of the donor and acceptor type253,2S5,2S6 Within the concentration range of 1 x 1CT4 — 1 x 10"3 mol/1, a linear relationship between the efficiency of fluorescence quenching [(/0//) — 1] and the quencher concentration was found. For the determination of quenching constants, the Stem-Volmer equation was used, viz. [Pg.24]

Bamford, Jenkins and coworkers131157 concluded that many of the limitations of the Q-e scheme stemmed from its empirical nature and proposed a new scheme containing a radical reactivity term, based on experimentally measured values of the rate constant for abstraction of benzylic hydrogen from toluene (Ay i), a polar term (the Hammett o value) and two constants a and J which are specific for a given monomer or substrate (eq. 57) 146... [Pg.365]

Rate constant for adding a stem to a flat substrate... [Pg.223]

Rate constant for removal of a stem next to an existing stem of the same length... [Pg.223]

In the LH model a nucleus is formed and subsequently spreads by the addition and removal of complete stems, as shown in Fig. 3.8, where ae and a are the fold and lateral surface free energies, a and b are the width and depth of the chains. The probabilities of addition or removal are reflected in the appropriate rate constants using the following notation ... [Pg.258]

A0 The rate constant for adding a new stem to the substrate, that is, the probability per possible stem position per unit time that a new stem will be added. [Pg.258]

If the two representations are equivalent then Eqs. (3.79) and (3.80) describe how A s and B s must be transformed in terms of a s and /Ts. (These identities are performed explicitly by Sanchez and Di Marzio, [49]. Frank and Tosi [105] further show that if a s and /Ts are chosen to satisfy detailed balance conditions, that is equilibrium behaviour, then the occupation numbers of the two representations are only equivalent if the nv s are in an equilibrium distribution within each stage. This is likely to be true if there is a high fold free energy barrier at the end of each stem deposition, and thus will probably be a good representation for most polymers. In particular, the rate constant for the deposition of the first stem, A0 must contain the high fold free energy term, i.e. ... [Pg.268]

The model described in Sect. 3.5.1 is a very crude representation of a true three-dimensional lamella, and over the years modifications have been applied in order to make it more realistic. The major assumptions, however, are still inherent in all of them, that is, the deposition of complete stems is controlled by rate constants which obey Eq. (3.83). No other reaction paths are allowed and the growth rate is then given by nucleation and spreading formulae. We do not give the details of the calculations which are very similar, but more complicated, than those already given. Rather, we try to provide an overview of the work which has been done. Most of this has been mentioned already elsewhere in this review. [Pg.275]

Figure 3.17 illustrates the processes allowed in Point s model, and defines the rate constants to be used. The approach is very similar to that used in Sect. 3.5.2, and we shall use any results derived there which are applicable without repeating the calculation. The first stem can be of any length, l, and the number of such stems in an ensemble is N,. The net current between Nt and Nl+1 is S, which depends on the forward and backward rate constants for a segment, A and B. Subsequent stems are of the same length and the current between the kth and (k + l)lh stem of length / is Jlk and depends on the rate constants for a complete stem, Alk and Blk, and on the number of such stems, Mlk and Mlk+l. The time dependent equations are ... [Pg.282]

Fig. 3.17. The processes and associated rate constants in Point s model. During the deposition of the intial stem units can add or subtract with rate constants A and B. After the first stem only complete stems may add... Fig. 3.17. The processes and associated rate constants in Point s model. During the deposition of the intial stem units can add or subtract with rate constants A and B. After the first stem only complete stems may add...

See other pages where Stem constants is mentioned: [Pg.178]    [Pg.9]    [Pg.372]    [Pg.131]    [Pg.144]    [Pg.187]    [Pg.147]    [Pg.29]    [Pg.162]    [Pg.279]    [Pg.330]    [Pg.295]    [Pg.503]    [Pg.29]    [Pg.179]    [Pg.308]    [Pg.184]    [Pg.1282]    [Pg.284]    [Pg.632]    [Pg.601]    [Pg.145]    [Pg.223]    [Pg.243]    [Pg.258]    [Pg.258]    [Pg.259]    [Pg.259]    [Pg.260]    [Pg.264]    [Pg.275]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



Stem-Volmer constant

Stem-Volmer iodide-quenching constant

Stem-Volmer quenching constant

Stem-Volmer quenching rate constants

© 2024 chempedia.info