Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steady state conditions continuous stirred tank

For steady-state operation of a continuous stirred-tank reactor or continuous stirred-tank reactor cascade, there is no change in conditions with respect to time, and therefore the accumulation term is zero. Under transient conditions, the full form of the equation, involving all four terms, must be employed. [Pg.132]

Although continuous stirred-tank reactors (Fig. 3.12) normally operate at steady-state conditions, a derivation of the full dynamic equation for the system, is necessary to cover the instances of plant start up, shut down and the application of reactor control. [Pg.147]

Many reviews and several books [61,62] have appeared on the theoretical and experimental aspects of the continuous, stirred tank reactor - the so-called chemostat. Properties of the chemostat are not discussed here. The concentrations of the reagents and products can not be calculated by the algebraic equations obtained for steady-state conditions, when ji = D (the left-hand sides of Eqs. 27-29 are equal to zero), because of the double-substrate-limitation model (Eq. 26) used. These values were obtained from the time course of the concentrations obtained by simulation of the fermentation. It was assumed that the dispersed organic phase remains in the reactor and the dispersed phase holdup does not change during the process. The inlet liquid phase does not contain either organic phase or biomass. [Pg.74]

Continuous-stirred tank reactor (CSTR) This reactor is operated under steady-state condition. The reactants flow continuously in and out of the vessel at a constant flow rate and are perfectly mixed by mechanical means, and thus the composition is the same throughout the reactor. The result is that the exit concentration is the same as the one in the reactor. The concentration is constant, i.e. is not time-dependent. [Pg.73]

All chemical reactions are accompanied by some heat effects so that the temperature will tend to change, a serious result in view of the sensitivity of most reaction rates to temperature. Factors of equipment size, controllability, and possibly unfavorable product distribution of complex reactions often necessitate provision of means of heat transfer to keep the temperature within bounds. In practical operation of nonflow or tubular flow reactors, truly isothermal conditions are not feasible even if they were desirable. Individual continuous stirred tanks, however, do maintain substantially uniform temperatures at steady state when the mixing is intense enough the level is determined by the heat of reaction as well as the rate of heat transfer provided. [Pg.555]

Consider an exothermic irreversible reaction with first order kinetics in an adiabatic continuous flow stirred tank reactor. It is possible to determine the stable operating temperatures and conversions by combining both the mass and energy balance equations. For the mass balance equation at constant density and steady state condition,... [Pg.504]

Emulsion Polymerization in a CSTR. Emulsion polymerization is usually carried out isothermally in batch or continuous stirred tank reactors. Temperature control is much easier than for bulk or solution polymerization because the small (. 5 Jim) polymer particles, which are the locus of reaction, are suspended in a continuous aqueous medium as shown in Figure 5. This complex, multiphase reactor also shows multiple steady states under isothermal conditions. Gerrens and coworkers at BASF seem to be the first to report these phenomena both computationally and experimentally. Figure 6 (taken from ref. (253)) plots the autocatalytic behavior of the reaction rate for styrene polymerization vs. monomer conversion in the reactor. The intersection... [Pg.122]

The condition expressed by the Bodenstein approximation rx = 0 is often misleadingly called a steady state. It is not. It is not a time-independent state, only a state in which a specific variation with time (or reactor space time) is small compared with the others. In fact, some older textbooks applied what they called the steady-state approximation to batch reactions in order to derive the time dependence of the concentrations, unwittingly leading the incorrect presumption of a steady state ad absurdum. And a continuous stirred-tank or tubular reactor may, and usually does, come to a true steady state, even if the Bodenstein approximation is and remains inapplicable. [The approximation compares process rates r, it is irrelevant for its validity whether or not the reactor comes to a steady state, that is, whether the rates of change, dC /dr, become zero.]... [Pg.73]

In Table I the high-vacuum (HV) range means a pressure of 10 to 10 Torr entries designated by Torr mean pressures between 0.1 and 10 Torr flow refers to an unspecified steady-state flow pattern. It is apparent from Table I that there is a great diversity in the different oscillation conditions and catalytic systems. The pressures under which oscillations have been observed vary from 10 Torr for the CO/NO reaction on Pt(lOO) 141, 142) to atmospheric pressure for a large number of systems. The reactors used in these studies include ultrahigh-vacuum (UHV) systems, continuous stirred tank reactors (CSTRs), flow reactors, and reactors designed as infrared (IR) cells, calorimeters, and ellipsometric systems. [Pg.54]

The principal advantage of continuous reaction vessels is that they operate (after an initial transient period) under steady-state conditions that are conducive to the formation of a highly uniform and well-regulated product. In this section, we shall confine the discussion to continuous stirred-tank reactors (CSTRs). These reactors are characterized by isothermal, spatially uniform operation. [Pg.105]

In an ideal continuous stirred tank reactor, composition and temperature are uniform throughout just as in the ideal batch reactor. But this reactor also has a continuous feed of reactants and a continuous withdrawal of products and unconverted reactants, and the effluent composition and temperature are the same as those in the tank (Fig. 7-fb). A CSTR can be operated under transient conditions (due to variation in feed composition, temperature, cooling rate, etc., with time), or it can be operated under steady-state conditions. In this section we limit the discussion to isothermal conditions. This eliminates the need to consider energy balance equations, and due to the uniform composition the component material balances are simple ordinary differential equations with time as the independent variable ... [Pg.12]

The reactor models considering complete mixing may be subdivided into batch and continuous types. In the continuous stirred tank reactor (CSTR) models, an entering fluid is assumed to be instantaneously mixed with the existing contents of the reactor so that it loses its identity. This type of reactor operates at uniform concentration and temperature levels. For this reason the species mass balances and the temperature equation may be written for the entire reactor volume, not only over a differential volume element. Under steady-state conditions, the species mass and heat balances reduce to algebraic equations. [Pg.663]


See other pages where Steady state conditions continuous stirred tank is mentioned: [Pg.111]    [Pg.195]    [Pg.128]    [Pg.92]    [Pg.74]    [Pg.101]    [Pg.104]    [Pg.98]    [Pg.26]    [Pg.368]    [Pg.2]    [Pg.53]    [Pg.7]    [Pg.725]    [Pg.195]    [Pg.117]    [Pg.340]    [Pg.725]    [Pg.319]    [Pg.2997]    [Pg.10]    [Pg.114]    [Pg.164]    [Pg.195]   


SEARCH



Continuously stirred tank

State, continuity

Steady conditions

Steady state continuously stirred tank

Steady-state conditions

Stirred continuous

Stirring conditions

© 2024 chempedia.info