Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical thermodynamics thermodynamic properties

The most fundamental step in constructing a continuum is to select a statistically valid fluid element of the continuum. The fluid element needs to be selected in such a way that it contains sufficient particles so that the fluid element possesses statistical thermodynamic properties such as temperature and density, as well as velocity. At the same time, the fluid element must be small enough compared to the characteristic length of the system so that,... [Pg.164]

Vibrational frequencies and statistical thermodynamic properties, such as zero-point energy and gas-phase heat capacity and entropy, can be computed from a normal coordinate analysis. [Pg.3281]

A quantitative theory of rate processes has been developed on the assumption that the activated state has a characteristic enthalpy, entropy and free energy the concentration of activated molecules may thus be calculated using statistical mechanical methods. Whilst the theory gives a very plausible treatment of very many rate processes, it suffers from the difficulty of calculating the thermodynamic properties of the transition state. [Pg.402]

Statistical mechanics is the mathematical means to calculate the thermodynamic properties of bulk materials from a molecular description of the materials. Much of statistical mechanics is still at the paper-and-pencil stage of theory. Since quantum mechanicians cannot exactly solve the Schrodinger equation yet, statistical mechanicians do not really have even a starting point for a truly rigorous treatment. In spite of this limitation, some very useful results for bulk materials can be obtained. [Pg.12]

The drawback of the statistical approach is that it depends on a model, and models are bound to oversimplify. Nevertheless, we can learn a great deal from the attempt to evaluate thermodynamic properties from molecular models, even if the effort falls short of quantitative success. [Pg.507]

For example, the measured pressure exerted by an enclosed gas can be thought of as a time-averaged manifestation of the individual molecules random motions. When one considers an individual molecule, however, statistical thermodynamics would propose its random motion or pressure could be quite different from that measured by even the most sensitive gauge which acts to average a distribution of individual molecule pressures. The particulate nature of matter is fundamental to statistical thermodynamics as opposed to classical thermodynamics, which assumes matter is continuous. Further, these elementary particles and their complex substmctures exhibit wave properties even though intra- and interparticle energy transfers are quantized, ie, not continuous. Statistical thermodynamics holds that the impression of continuity of properties, and even the soHdity of matter is an effect of scale. [Pg.248]

Essentially, the RISM and extended RISM theories can provide infonnation equivalent to that obtained from simulation techniques, namely, thermodynamic properties, microscopic liquid structure, and so on. But it is noteworthy that the computational cost is dramatically reduced by this analytical treatment, which can be combined with the computationally expensive ab initio MO theory. Another aspect of such treatment is the transparent logic that enables phenomena to be understood in terms of statistical mechanics. Many applications have been based on the RISM and extended RISM theories [10,11]. [Pg.420]

Computer simulation generates information at the microscopic level, and the conversion of this information into macroscopic terms is the province of statistical thermodynamics. An experimentally observable property A is just the time average of A(F) taken over a long time interval,... [Pg.59]

The earliest hint that physics and information might be more than just casually related actually dates back at least as far as 1871 and the publication of James Clerk Maxwell s Theory of Heat, in which Maxwell introduced what has become known as the paradox of Maxwell s Demon. Maxwell postulated the existence of a hypothetical demon that positions himself by a hole separating two vessels, say A and B. While the vessels start out being at the same temperature, the demon selectively opens the hole only to either pass faster molecules from A to B or to pass slower molecules from B to A. Since this results in a systematic increase in B s temperature and a lowering of A s, it appears as though Maxwell s demon s actions violate the second law of thermodynamics the total entropy of any physical system can only increase, or, for totally reversible processes, remain the same it can never decrease. Maxwell was thus the first to recognize a connection between the thermodynamical properties of a gas (temperature, entropy, etc.) and the statistical properties of its constituent molecules. [Pg.635]

Thermodynamic, statistical This discipline tries to compute macroscopic properties of materials from more basic structures of matter. These properties are not necessarily static properties as in conventional mechanics. The problems in statistical thermodynamics fall into two categories. First it involves the study of the structure of phenomenological frameworks and the interrelations among observable macroscopic quantities. The secondary category involves the calculations of the actual values of phenomenology parameters such as viscosity or phase transition temperatures from more microscopic parameters. With this technique, understanding general relations requires only a model specified by fairly broad and abstract conditions. Realistically detailed models are not needed to un-... [Pg.644]

There is thus assumed to be a one-to-one correspondence between the most probable distribution and the thermodynamic state. The equilibrium ensemble corresponding to any given thermodynamic state is then used to compute averages over the ensemble of other (not necessarily thermodynamic) properties of the systems represented in the ensemble. The first step in developing this theory is thus a suitable definition of the probability of a distribution in a collection of systems. In classical statistics we are familiar with the fact that the logarithm of the probability of a distribution w[n is — J(n) w n) In w n, and that the classical expression for entropy in the ensemble is20... [Pg.466]

Again, therefore, all thermodynamic properties of a system in quantum statistics can be derived from a knowledge of the partition function, and since this is the trace of an operator, we can choose any convenient representation in which to compute it. The most fruitful application of this method is probably to the theory of imperfect gases, and is well covered in the standard reference works.23... [Pg.472]

Statistical thermodynamics provides the relationships that we need in order to bridge this gap between the macro and the micro. Our most important application will involve the calculation of the thermodynamic properties of the ideal gas, but we will also apply the techniques to solids. The procedure will involve calculating U — Uo, the internal energy above zero Kelvin, from the energy of the individual molecules. Enthalpy differences and heat capacities are then easily calculated from the internal energy. Boltzmann s equation... [Pg.497]

Calculation of Thermodynamic Properties We note that the translational contributions to the thermodynamic properties depend on the mass or molecular weight of the molecule, the rotational contributions on the moments of inertia, the vibrational contributions on the fundamental vibrational frequencies, and the electronic contributions on the energies and statistical weight factors for the electronic states. With the aid of this information, as summarized in Tables 10.1 to 10.3 for a number of molecules, and the thermodynamic relationships summarized in Table 10.4, we can calculate a... [Pg.549]

So far, we have used the statistical approach to calculate the thermodynamic properties of an ideal gas. Translational, rotational, vibrational, and electronic contributions were included, along with internal rotations where applicable. [Pg.569]

Chapter 10, the last chapter in this volume, presents the principles and applications of statistical thermodynamics. This chapter, which relates the macroscopic thermodynamic variables to molecular properties, serves as a capstone to the discussion of thermodynamics presented in this volume. It is a most satisfying exercise to calculate the thermodynamic properties of relatively simple gaseous systems where the calculation is often more accurate than the experimental measurement. Useful results can also be obtained for simple atomic solids from the Debye theory. While computer calculations are rapidly approaching the level of sophistication necessary to perform computations of... [Pg.686]

This volume also contains four appendices. The appendices give the mathematical foundation for the thermodynamic derivations (Appendix 1), describe the ITS-90 temperature scale (Appendix 2), describe equations of state for gases (Appendix 3), and summarize the relationships and data needed for calculating thermodynamic properties from statistical mechanics (Appendix 4). We believe that they will prove useful to students and practicing scientists alike. [Pg.687]

The most common states of a pure substance are solid, liquid, or gas (vapor), state property See state function. state symbol A symbol (abbreviation) denoting the state of a species. Examples s (solid) I (liquid) g (gas) aq (aqueous solution), statistical entropy The entropy calculated from statistical thermodynamics S = k In W. statistical thermodynamics The interpretation of the laws of thermodynamics in terms of the behavior of large numbers of atoms and molecules, steady-state approximation The assumption that the net rate of formation of reaction intermediates is 0. Stefan-Boltzmann law The total intensity of radiation emitted by a heated black body is proportional to the fourth power of the absolute temperature, stereoisomers Isomers in which atoms have the same partners arranged differently in space, stereoregular polymer A polymer in which each unit or pair of repeating units has the same relative orientation, steric factor (P) An empirical factor that takes into account the steric requirement of a reaction, steric requirement A constraint on an elementary reaction in which the successful collision of two molecules depends on their relative orientation. [Pg.967]

The submieroseopie level is further distinguished into one studying the properties of isolated molecules (represented at the highest level by quantum chemistry) and one studying the statistical behavior of large assembles of molecules (studied by the methods of statistical thermodynamics) (Ben-Zvi, Silberstein, Mamlok, 1990). [Pg.109]

A number of other thermodynamic properties of adamantane and diamantane in different phases are reported by Kabo et al. [5]. They include (1) standard molar thermodynamic functions for adamantane in the ideal gas state as calculated by statistical thermodynamics methods and (2) temperature dependence of the heat capacities of adamantane in the condensed state between 340 and 600 K as measured by a scanning calorimeter and reported here in Fig. 8. According to this figure, liquid adamantane converts to a solid plastic with simple cubic crystal structure upon freezing. After further cooling it moves into another solid state, an fee crystalline phase. [Pg.214]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

It is not the purpose of chemistry, but rather of statistical thermodynamics, to formulate a theory of the structure of water. Such a theory should be able to calculate the properties of water, especially with regard to their dependence on temperature. So far, no theory has been formulated whose equations do not contain adjustable parameters (up to eight in some theories). These include continuum and mixture theories. The continuum theory is based on the concept of a continuous change of the parameters of the water molecule with temperature. Recently, however, theories based on a model of a mixture have become more popular. It is assumed that liquid water is a mixture of structurally different species with various densities. With increasing temperature, there is a decrease in the number of low-density species, compensated by the usual thermal expansion of liquids, leading to the formation of the well-known maximum on the temperature dependence of the density of water (0.999973 g cm-3 at 3.98°C). [Pg.25]

The density of states is the central function in statistical thermodynamics, and provides the key link between the microscopic states of a system and its macroscopic, observable properties. In systems with continuous degrees of freedom, the correct treatment of this function is not as straightforward as in lattice systems - we, therefore, present a brief discussion of its subtleties later. The section closes with a short description of the microcanonical MC simulation method, which demonstrates the properties of continuum density of states functions. [Pg.15]

The reason that the PDT is an effective tool for the generation of physical models is that it treats an intensive thermodynamic property, and the distribution functions involved are simpler in the thermodynamic limit than if this were not the case [10]. An extended family of modeling tools then applies directly. The quasichemical approach is a general example. It amounts to stratification of the statistical problem... [Pg.347]


See other pages where Statistical thermodynamics thermodynamic properties is mentioned: [Pg.233]    [Pg.100]    [Pg.232]    [Pg.381]    [Pg.61]    [Pg.14]    [Pg.338]    [Pg.317]    [Pg.534]    [Pg.369]    [Pg.248]    [Pg.248]    [Pg.182]    [Pg.804]    [Pg.101]    [Pg.464]    [Pg.5]    [Pg.349]    [Pg.17]    [Pg.566]    [Pg.662]    [Pg.663]    [Pg.336]    [Pg.129]    [Pg.718]    [Pg.693]   
See also in sourсe #XX -- [ Pg.614 , Pg.615 , Pg.616 , Pg.617 , Pg.651 , Pg.652 , Pg.653 ]




SEARCH



State Properties from Statistical Thermodynamics

Statistical thermodynamic

Statistical thermodynamics

Statistical thermodynamics thermodynamic property derivation

Thermodynamic Properties and Statistical Mechanics

Thermodynamic Properties from Statistical Thermodynamics

© 2024 chempedia.info