Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical thermodynamic functions

The statistical thermodynamic functions for COBr have been calculated from spectroscopic data, and the standard values are those of Overend and Evans (Table 14.1 Fig. 14.2) [1575]. More recent values have been calculated [1587], but these differ from the standard values by less than 0.2%, and have not therefore been detailed here. [Pg.669]

Thus from an adsorption isotherm and its temperature variation, one can calculate either the differential or the integral entropy of adsorption as a function of surface coverage. The former probably has the greater direct physical meaning, but the latter is the quantity usually first obtained in a statistical thermodynamic adsorption model. [Pg.645]

K (66.46 e.u.) with the spectroscopic value calculated from experimental data (66.41 0.009 e.u.) (295, 289) indicates that the crystal is an ordered form at 0°K. Thermodynamic functions of thiazole were also determined by statistical thermodynamics from vibrational spectra (297, 298). [Pg.87]

MaxweU-Boltzmaim particles are distinguishable, and a partition function, or distribution, of these particles can be derived from classical considerations. Real systems exist in which individual particles ate indistinguishable. Eor example, individual electrons in a soHd metal do not maintain positional proximity to specific atoms. These electrons obey Eermi-Ditac statistics (133). In contrast, the quantum effects observed for most normal gases can be correlated with Bose-Einstein statistics (117). The approach to statistical thermodynamics described thus far is referred to as wave mechanics. An equivalent quantum theory is referred to as matrix mechanics (134—136). [Pg.248]

The numbers iVj and N- are only equal if there are no degeneracies. The sum in the denominator runs over all available molecular energy levels and it is called the molecular partition function. It is a quantity of immense importance in statistical thermodynamics, and it is given the special symbol q (sometimes z). We have... [Pg.61]

By a statistical model of a solution we mean a model which does not attempt to describe explicitly the nature of the interaction between solvent and solute species, but simply assumes some general characteristic for the interaction, and presents expressions for the thermodynamic functions of the solution in terms of an assumed interaction parameter. The quasi-chemical theory is of this type, and we have noted that a serious deficiency is its failure to consider the vibrational effects in the solution. It is of interest, therefore, to consider briefly the average-potential model which does include the effect of vibrations. [Pg.134]

Current use of statistical thermodynamics implies that the adsorption system can be effectively separated into the gas phase and the adsorbed phase, which means that the partition function of motions normal to the surface can be represented with sufficient accuracy by that of oscillators confined to the surface. This becomes less valid, the shorter is the mean adsorption time of adatoms, i.e. the higher is the desorption temperature. Thus, near the end of the desorption experiment, especially with high heating rates, another treatment of equilibria should be used, dealing with the whole system as a single phase, the adsorbent being a boundary. This is the approach of the gas-surface virial expansion of adsorption isotherms (51, 53) or of some more general treatment of this kind. [Pg.350]

Several methods have been developed for the quantitative description of such systems. The partition function of the polymer is computed with the help of statistical thermodynamics which finally permits the computation of the degree of conversion 0. In the simplest case, it corresponds to the linear Ising model according to which only the nearest segments interact cooperatively149. The second possibility is to start from already known equilibrium relations and thus to compute the relevant degree of conversion 0. [Pg.186]

Values for the thermodynamic functions as a function of temperature for condensed phases are usually obtained from Third Law measurements. Values for ideal gases are usually calculated from the molecular parameters using the statistical mechanics procedures to be described in Chapter 10. In either... [Pg.192]

P10.5 The thermodynamic functions for solid, liquid, and gaseous carbonyl chloride (COCL) obtained from Third Law and statistical calculations... [Pg.588]

One can write for Eq. (7-49) an expression for the equilibrium constant. Statistical thermodynamics allows its formulation in terms of partition functions ... [Pg.170]

The most common states of a pure substance are solid, liquid, or gas (vapor), state property See state function. state symbol A symbol (abbreviation) denoting the state of a species. Examples s (solid) I (liquid) g (gas) aq (aqueous solution), statistical entropy The entropy calculated from statistical thermodynamics S = k In W. statistical thermodynamics The interpretation of the laws of thermodynamics in terms of the behavior of large numbers of atoms and molecules, steady-state approximation The assumption that the net rate of formation of reaction intermediates is 0. Stefan-Boltzmann law The total intensity of radiation emitted by a heated black body is proportional to the fourth power of the absolute temperature, stereoisomers Isomers in which atoms have the same partners arranged differently in space, stereoregular polymer A polymer in which each unit or pair of repeating units has the same relative orientation, steric factor (P) An empirical factor that takes into account the steric requirement of a reaction, steric requirement A constraint on an elementary reaction in which the successful collision of two molecules depends on their relative orientation. [Pg.967]

On expressing Kj in terms of statistical thermodynamics, an approximation can be adopted that the partition function of the middle oxidation level is an average of functions for the oxidized and reduced forms i.e., the preexponential... [Pg.370]

A number of other thermodynamic properties of adamantane and diamantane in different phases are reported by Kabo et al. [5]. They include (1) standard molar thermodynamic functions for adamantane in the ideal gas state as calculated by statistical thermodynamics methods and (2) temperature dependence of the heat capacities of adamantane in the condensed state between 340 and 600 K as measured by a scanning calorimeter and reported here in Fig. 8. According to this figure, liquid adamantane converts to a solid plastic with simple cubic crystal structure upon freezing. After further cooling it moves into another solid state, an fee crystalline phase. [Pg.214]

To understand how collision theory has been derived, we need to know the velocity distribution of molecules at a given temperature, as it is given by the Maxwell-Boltzmann distribution. To use transition state theory we need the partition functions that follow from the Boltzmann distribution. Hence, we must devote a section of this chapter to statistical thermodynamics. [Pg.80]

By applying the machinery of statistical thermodynamics we have derived expressions for the adsorption, reaction, and desorption of molecules on and from a surface. The rate constants can in each case be described as a ratio between partition functions of the transition state and the reactants. Below, we summarize the most important results for elementary surface reactions. In principle, all the important constants involved (prefactors and activation energies) can be calculated from the partitions functions. These are, however, not easily obtainable and, where possible, experimentally determined values are used. [Pg.127]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

Uk, ---,Uk comprising Zc1,...,/cM 1 units, respectively [14]. Generating functions of such correlators play a key role in the theory of microphase separation and in the statistical thermodynamics of block copolymers [3]. [Pg.167]

In summary, Eq. (86) is a general expression for the number of particles in a given quantum state. If t = 1, this result is appropriate to Fenni-rDirac statistics, or to Bose-Einstein statistics, respectively. However, if i is equated torero, the result corresponds to the Maxwell -Boltzmann distribution. In many cases the last is a good approximation to quantum systems, which is furthermore, a correct description of classical ones - those in which the energy levels fotm a continuum. From these results the partition functions can be calculated, leading to expressions for the various thermodynamic functions for a given system. In many cases these values, as obtained from spectroscopic observations, are more accurate than those obtained by direct thermodynamic measurements. [Pg.349]

There are three approaches that may be used in deriving mathematical expressions for an adsorption isotherm. The first utilizes kinetic expressions for the rates of adsorption and desorption. At equilibrium these two rates must be equal. A second approach involves the use of statistical thermodynamics to obtain a pseudo equilibrium constant for the process in terms of the partition functions of vacant sites, adsorbed molecules, and gas phase molecules. A third approach using classical thermodynamics is also possible. Because it provides a useful physical picture of the molecular processes involved, we will adopt the kinetic approach in our derivations. [Pg.173]

The density of states is the central function in statistical thermodynamics, and provides the key link between the microscopic states of a system and its macroscopic, observable properties. In systems with continuous degrees of freedom, the correct treatment of this function is not as straightforward as in lattice systems - we, therefore, present a brief discussion of its subtleties later. The section closes with a short description of the microcanonical MC simulation method, which demonstrates the properties of continuum density of states functions. [Pg.15]

The correction displayed is negligible relative to 1, in the macroscopic limit. The independence in the thermodynamic limit of the PDT on a choice of simulation ensemble used for statistical evaluation is a difference from the partition functions encountered in Gibbsian statistical thermodynamics. [Pg.331]

The most important new concept to come from thermodynamics is entropy. Like volume, internal energy and mole number it is an extensive property of a system and together with these, and other variables it defines an elegant self-consistent theory. However, there is one important difference entropy is the only one of the extensive thermodynamic functions that has no obvious physical interpretation. It is only through statistical integration of the mechanical behaviour of microsystems that a property of the average macrosystem, that resembles the entropy function, emerges. [Pg.428]

The partition function provides a direct method to estimate thermodynamic functions statistically. [Pg.450]

The statistical partition functions are seen to be related by Laplace transformation in the same way that thermodynamic potentials are related by Legendre transformation. It is conjectured that the Laplace transformation of the statistical partition functions reduces asymptotically to the Legendre transformation of MP in the limit of infinitely large systems. [Pg.484]

The examples cited above are only two of the many possible cases of H-bond isomerization. Because of the low kinetic barriers separating these species, equilibration of H-bonded isomer populations to limiting thermodynamic values is generally expected to be much faster than for covalent isomers. Methods of quantum statistical thermodynamics can be used to calculate partition functions and equilibrium population distributions for H-bonded isomers,41 just as in the parallel case for covalent isomers and conformers. [Pg.607]


See other pages where Statistical thermodynamic functions is mentioned: [Pg.669]    [Pg.55]    [Pg.669]    [Pg.55]    [Pg.61]    [Pg.248]    [Pg.299]    [Pg.86]    [Pg.140]    [Pg.566]    [Pg.662]    [Pg.663]    [Pg.298]    [Pg.318]    [Pg.718]    [Pg.209]    [Pg.308]    [Pg.325]    [Pg.127]    [Pg.10]    [Pg.106]    [Pg.326]    [Pg.127]    [Pg.146]   


SEARCH



Basic Equations of Statistical Thermodynamics - Partition function

Classical statistical mechanics thermodynamic functions

Comparison of statistical analogues with thermodynamic functions

Equilibrium statistical mechanics canonical thermodynamic functions

Heat function, statistical thermodynamics

Statistical thermodynamic

Statistical thermodynamics

Statistical thermodynamics Gibbs entropy function

Statistical thermodynamics partition function

Statistical thermodynamics state functions

Thermodynamic Functions in the Fermi Statistics

Thermodynamic functions

© 2024 chempedia.info