Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical thermodynamics partition functions

One approach, presented by Taft (10) and later confirmed by Becker (101), is based on the separation of the free energy of activation into contributions coming from polar and steric effects (10). The contribution from the steric effect was then postulated to contain both "steric strain" or repulsion and "steric hindrance of motions" obtained from the statistical thermodynamic partition function Q. This separation therefore represents the changes in potential and kinetic energies related to the steric effect. Since the total steric effect AAE is related to... [Pg.53]

Basic Equations of Statistical Thermodynamics -Partition Function... [Pg.23]

It is, however, possible to replace the phase integral of Gibbs by a sum-over-statos or partition function, which in quantum statistics plays the same role for the calculation of thermodynamic properties that Gibbs phase integral plays in classical statistics. The partition function Q is defined as... [Pg.201]

Keywords Configuration interaction Thermodynamics Partition function Temperature Canonical ensemble Grand canonical ensemble Fermi-Dirac statistics... [Pg.86]

MaxweU-Boltzmaim particles are distinguishable, and a partition function, or distribution, of these particles can be derived from classical considerations. Real systems exist in which individual particles ate indistinguishable. Eor example, individual electrons in a soHd metal do not maintain positional proximity to specific atoms. These electrons obey Eermi-Ditac statistics (133). In contrast, the quantum effects observed for most normal gases can be correlated with Bose-Einstein statistics (117). The approach to statistical thermodynamics described thus far is referred to as wave mechanics. An equivalent quantum theory is referred to as matrix mechanics (134—136). [Pg.248]

The numbers iVj and N- are only equal if there are no degeneracies. The sum in the denominator runs over all available molecular energy levels and it is called the molecular partition function. It is a quantity of immense importance in statistical thermodynamics, and it is given the special symbol q (sometimes z). We have... [Pg.61]

Current use of statistical thermodynamics implies that the adsorption system can be effectively separated into the gas phase and the adsorbed phase, which means that the partition function of motions normal to the surface can be represented with sufficient accuracy by that of oscillators confined to the surface. This becomes less valid, the shorter is the mean adsorption time of adatoms, i.e. the higher is the desorption temperature. Thus, near the end of the desorption experiment, especially with high heating rates, another treatment of equilibria should be used, dealing with the whole system as a single phase, the adsorbent being a boundary. This is the approach of the gas-surface virial expansion of adsorption isotherms (51, 53) or of some more general treatment of this kind. [Pg.350]

Several methods have been developed for the quantitative description of such systems. The partition function of the polymer is computed with the help of statistical thermodynamics which finally permits the computation of the degree of conversion 0. In the simplest case, it corresponds to the linear Ising model according to which only the nearest segments interact cooperatively149. The second possibility is to start from already known equilibrium relations and thus to compute the relevant degree of conversion 0. [Pg.186]

Again, therefore, all thermodynamic properties of a system in quantum statistics can be derived from a knowledge of the partition function, and since this is the trace of an operator, we can choose any convenient representation in which to compute it. The most fruitful application of this method is probably to the theory of imperfect gases, and is well covered in the standard reference works.23... [Pg.472]

One can write for Eq. (7-49) an expression for the equilibrium constant. Statistical thermodynamics allows its formulation in terms of partition functions ... [Pg.170]

On expressing Kj in terms of statistical thermodynamics, an approximation can be adopted that the partition function of the middle oxidation level is an average of functions for the oxidized and reduced forms i.e., the preexponential... [Pg.370]

To understand how collision theory has been derived, we need to know the velocity distribution of molecules at a given temperature, as it is given by the Maxwell-Boltzmann distribution. To use transition state theory we need the partition functions that follow from the Boltzmann distribution. Hence, we must devote a section of this chapter to statistical thermodynamics. [Pg.80]

By applying the machinery of statistical thermodynamics we have derived expressions for the adsorption, reaction, and desorption of molecules on and from a surface. The rate constants can in each case be described as a ratio between partition functions of the transition state and the reactants. Below, we summarize the most important results for elementary surface reactions. In principle, all the important constants involved (prefactors and activation energies) can be calculated from the partitions functions. These are, however, not easily obtainable and, where possible, experimentally determined values are used. [Pg.127]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

In summary, Eq. (86) is a general expression for the number of particles in a given quantum state. If t = 1, this result is appropriate to Fenni-rDirac statistics, or to Bose-Einstein statistics, respectively. However, if i is equated torero, the result corresponds to the Maxwell -Boltzmann distribution. In many cases the last is a good approximation to quantum systems, which is furthermore, a correct description of classical ones - those in which the energy levels fotm a continuum. From these results the partition functions can be calculated, leading to expressions for the various thermodynamic functions for a given system. In many cases these values, as obtained from spectroscopic observations, are more accurate than those obtained by direct thermodynamic measurements. [Pg.349]

There are three approaches that may be used in deriving mathematical expressions for an adsorption isotherm. The first utilizes kinetic expressions for the rates of adsorption and desorption. At equilibrium these two rates must be equal. A second approach involves the use of statistical thermodynamics to obtain a pseudo equilibrium constant for the process in terms of the partition functions of vacant sites, adsorbed molecules, and gas phase molecules. A third approach using classical thermodynamics is also possible. Because it provides a useful physical picture of the molecular processes involved, we will adopt the kinetic approach in our derivations. [Pg.173]

This equation forms the fundamental connection between thermodynamics and statistical mechanics in the canonical ensemble, from which it follows that calculating A is equivalent to estimating the value of Q. In general, evaluating Q is a very difficult undertaking. In both experiments and calculations, however, we are interested in free energy differences, AA, between two systems or states of a system, say 0 and 1, described by the partition functions Qo and (), respectively - the arguments N, V., T have been dropped to simplify the notation ... [Pg.20]

Here an additional distinction is to be made between thermodynamic averages of a conformational observable such as the internal energy, which converges well if potential minima are correctly sampled, and statistical properties such as free energies, which depend on the entire partition function. [Pg.282]

The correction displayed is negligible relative to 1, in the macroscopic limit. The independence in the thermodynamic limit of the PDT on a choice of simulation ensemble used for statistical evaluation is a difference from the partition functions encountered in Gibbsian statistical thermodynamics. [Pg.331]

The partition function provides a direct method to estimate thermodynamic functions statistically. [Pg.450]

The statistical partition functions are seen to be related by Laplace transformation in the same way that thermodynamic potentials are related by Legendre transformation. It is conjectured that the Laplace transformation of the statistical partition functions reduces asymptotically to the Legendre transformation of MP in the limit of infinitely large systems. [Pg.484]

The examples cited above are only two of the many possible cases of H-bond isomerization. Because of the low kinetic barriers separating these species, equilibration of H-bonded isomer populations to limiting thermodynamic values is generally expected to be much faster than for covalent isomers. Methods of quantum statistical thermodynamics can be used to calculate partition functions and equilibrium population distributions for H-bonded isomers,41 just as in the parallel case for covalent isomers and conformers. [Pg.607]

The thermodynamics of a system consisting of N interacting particles is in statistical mechanics given in terms of the partition function, Z, which is defined as [1]... [Pg.268]

The molecular modelling of systems consisting of many molecules is the field of statistical mechanics, sometimes called statistical thermodynamics [28,29], Basically, the idea is to go from a molecular model to partition functions, and then, from these, to predict thermodynamic observables and dynamic and structural quantities. As in classical thermodynamics, in statistical mechanics it is essential to define which state variables are fixed and which quantities are allowed to fluctuate, i.e. it is essential to specify the macroscopic boundary conditions. In the present context, there are a few types of molecular systems of interest, which are linked to so-called ensembles. [Pg.32]

We shall treat more compUcated cases, such as systems with a larger number of identical or different sites, and also cases of more than one type of ligand. But the general rules of constructing the canonical PF, and hence the GPF, are the same. The partition functions, either Q or have two important properties that make the tool of statistical thermodynamics so useful. One is that, for macroscopic systems, each of the partition functions is related to a thermodynamic potential. For the particular PFs mentioned above, these are... [Pg.20]


See other pages where Statistical thermodynamics partition functions is mentioned: [Pg.271]    [Pg.271]    [Pg.271]    [Pg.271]    [Pg.445]    [Pg.445]    [Pg.881]    [Pg.578]    [Pg.317]    [Pg.19]    [Pg.804]    [Pg.298]    [Pg.318]    [Pg.718]    [Pg.209]    [Pg.325]    [Pg.112]    [Pg.112]    [Pg.326]    [Pg.686]    [Pg.146]    [Pg.348]    [Pg.48]    [Pg.74]    [Pg.70]    [Pg.233]    [Pg.158]   
See also in sourсe #XX -- [ Pg.661 , Pg.662 ]




SEARCH



Basic Equations of Statistical Thermodynamics - Partition function

Partitioning partition functions

Partitioning thermodynamics

Statistical thermodynamic

Statistical thermodynamic functions

Statistical thermodynamics

Thermodynamic functions

Thermodynamics partition function

© 2024 chempedia.info