Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical mechanics relaxation

The main problem of elementary chemical reaction dynamics is to find the rate constant of the transition in the reaction complex interacting with its environment. This problem, in principle, is close to the general problem of statistical mechanics of irreversible processes (see, e.g., Blum [1981], Kubo et al. [1985]) about the relaxation of initially nonequilibrium state of a particle in the presence of a reservoir (heat bath). If the particle is coupled to the reservoir weakly enough, then the properties of the latter are fully determined by the spectral characteristics of its susceptibility coefficients. [Pg.7]

In order to proceed now to a statistical mechanical description of the corresponding relaxation process, it is convenient to solve the equation of motion for the creation and destruction operators and cast them in a form ressembling a Generalized Langevin equation. We will only sketch the procedure. [Pg.306]

The plan of this chapter is the following. Section II gives a summary of the phenomenology of irreversible processes and set up the stage for the results of nonequilibrium statistical mechanics to follow. In Section III, it is explained that time asymmetry is compatible with microreversibility. In Section IV, the concept of Pollicott-Ruelle resonance is presented and shown to break the time-reversal symmetry in the statistical description of the time evolution of nonequilibrium relaxation toward the state of thermodynamic equilibrium. This concept is applied in Section V to the construction of the hydrodynamic modes of diffusion at the microscopic level of description in the phase space of Newton s equations. This framework allows us to derive ab initio entropy production as shown in Section VI. In Section VII, the concept of Pollicott-Ruelle resonance is also used to obtain the different transport coefficients, as well as the rates of various kinetic processes in the framework of the escape-rate theory. The time asymmetry in the dynamical randomness of nonequilibrium systems and the fluctuation theorem for the currents are presented in Section VIII. Conclusions and perspectives in biology are discussed in Section IX. [Pg.85]

A general trend which could be noticed over the last few years and which may be expected to develop further in the near future involves a closer coupling between the use of general tools of computational chemistry (ab initio and semi-empirical quantum chemistry, statistical-mechanical simulations) and relaxation theory. When applied to model systems, the computational chemistry methods have the potential of providing new insights on how to develop theoretical models, as well as of yielding estimates of the parameters occurring in the models. [Pg.100]

A unified approach to the glass transition, viscoelastic response and yield behavior of crosslinking systems is presented by extending our statistical mechanical theory of physical aging. We have (1) explained the transition of a WLF dependence to an Arrhenius temperature dependence of the relaxation time in the vicinity of Tg, (2) derived the empirical Nielson equation for Tg, and (3) determined the Chasset and Thirion exponent (m) as a function of cross-link density instead of as a constant reported by others. In addition, the effect of crosslinks on yield stress is analyzed and compared with other kinetic effects — physical aging and strain rate. [Pg.124]

I. Pecht D. Lancet (1977) in Chemical Relaxation in Molecular Biology (I. Pecht R. Rigler, eds.) pp. 2-3, Springer-Verlag, Berlin. M. Eigen (1974) in Quantum Statistical Mechanics in the Natural Sciences (S. L. Minz S. M. Wiedermayer, eds.) pp. 37-61, Plenum Press, New York. [Pg.61]

The indices k in the Ihs above denote a pair of basis operators, coupled by the element Rk. - The indices n and /i denote individual interactions (dipole-dipole, anisotropic shielding etc) the double sum over /x and /x indicates the possible occurrence of interference terms between different interactions [9]. The spectral density functions are in turn related to the time-correlation functions (TCFs), the fundamental quantities in non-equilibrium statistical mechanics. The time-correlation functions depend on the strength of the interactions involved and on their modulation by stochastic processes. The TCFs provide the fundamental link between the spin relaxation and molecular dynamics in condensed matter. In many common cases, the TCFs and the spectral density functions can, to a good approximation, be... [Pg.328]

The latter condition is commonly known as microscopic reversibility or local detailed balance. This property is equivalent to time reversal invariance in deterministic (e.g., thermostatted) dynamics. Although it can be relaxed by requiring just global (rather than detailed) balance, it is physically natural to think of equilibrium as a local property. Microscopic reversibility, a common assumption in nonequilibrium statistical mechanics, is the crucial ingredient in the present derivation. [Pg.44]

During the last two decades, studies on ion solvation and electrolyte solutions have made remarkable progress by the interplay of experiments and theories. Experimentally, X-ray and neutron diffraction methods and sophisticated EXAFS, IR, Raman, NMR and dielectric relaxation spectroscopies have been used successfully to obtain structural and/or dynamic information about ion-solvent and ion-ion interactions. Theoretically, microscopic or molecular approaches to the study of ion solvation and electrolyte solutions were made by Monte Carlo and molecular dynamics calculations/simulations, as well as by improved statistical mechanics treatments. Some topics that are essential to this book, are included in this chapter. For more details of recent progress, see Ref. [1]. [Pg.28]

The basic assumption in statistical theories is that the initially prepared state, in an indirect (true or apparent) unimolecular reaction A (E) —> products, prior to reaction has relaxed (via IVR) such that any distribution of the energy E over the internal degrees of freedom occurs with the same probability. This is illustrated in Fig. 7.3.1, where we have shown a constant energy surface in the phase space of a molecule. Note that the assumption is equivalent to the basic equal a priori probabilities postulate of statistical mechanics, for a microcanonical ensemble where every state within a narrow energy range is populated with the same probability. This uniform population of states describes the system regardless of where it is on the potential energy surface associated with the reaction. [Pg.184]

The density matrix method is useful in treating relaxation processes, linear and non-linear laser spectroscopies and non-equilibrium statistical mechanics. In this chapter, the definition of density matrix and the equation of motion (EOM) it follows are introduced. The projection operator technique, which makes the density matrix method a very powerful tool in non-equilibrium statistical mechanics, is presented. [Pg.123]

Since percolation is a property of macroscopic many-particle systems, it can be analyzed in terms of statistical mechanics. The basic idea of statistical mechanics is the relaxation of the perturbed system to the equilibrium state. In general the distribution function p(p,q t) of a statistical ensemble depends on the generalized coordinates q, momentum p, and time t. However, in the equilibrium state it does not depend explicitly on time [226-230] and obeys the equation... [Pg.74]

We have reviewed the recent development of a nonequilibrium statistical mechanical theory of polymeric glasses, and have provided a unified account of the structural relaxation, physical aging, and deformation kinetics of glassy polymers, compatible blends, and particulate composites. The specific conclusions are as follows ... [Pg.188]

The moment problem has been almost exclusively studied in the literature having (implicitly) in mind Hermitian operators (classical moment problem). With the progress of the modem projective methods of statistical mechanics and the description of relaxation phenomena via effective non-Hermitian Hamiltonians or Liouvillians, it is important to consider the moment problem also in its generalized form. In this section we consider some specific aspects of the classical moment problem, and in Section V.C we focus on peculiar aspects of the relaxation moment problem. [Pg.100]

A. Laaksonen, J. Kowalewski, and B. Jdnsson, Intermolecular nuclear spin-spin coupling and scalar relaxation. A quantum-mechanical and statistical-mechanical study for the aqueous fluoride ion, Chem. Phys. Lett., 89 (1982), 412. [Pg.324]

David W. Oxtoby is a physical chemist who studies the statistical mechanics of liquids, including nucleation, phase transitions, and liquid-state reaction and relaxation. He received his B.A. (Chemistry and Physics) from Harvard University and his Ph.D. (Chemistry) from the University of California at Berkeley. After a postdoctoral position at the University of Paris, he joined the faculty at The University of Chicago, where he taught general chemistry, thermodynamics, and statistical mechanics and served as Dean of Physical Sciences. Since 2003 he has been President and Professor of Chemistry at Pomona College in Claremont, California. [Pg.1103]


See other pages where Statistical mechanics relaxation is mentioned: [Pg.1079]    [Pg.2271]    [Pg.296]    [Pg.179]    [Pg.316]    [Pg.4]    [Pg.84]    [Pg.268]    [Pg.86]    [Pg.32]    [Pg.170]    [Pg.207]    [Pg.256]    [Pg.254]    [Pg.208]    [Pg.99]    [Pg.434]    [Pg.164]    [Pg.152]    [Pg.314]    [Pg.31]    [Pg.82]    [Pg.88]    [Pg.178]    [Pg.638]    [Pg.89]    [Pg.537]    [Pg.69]   
See also in sourсe #XX -- [ Pg.516 , Pg.517 ]

See also in sourсe #XX -- [ Pg.516 , Pg.517 ]




SEARCH



MECHANICAL RELAXATION

Relaxation mechanisms

© 2024 chempedia.info