Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stabilized bed

Siegell, J. H., Liquid-Fluidized Magnetically Stabilized Beds, Powder Tech., 52 139 (1987)... [Pg.678]

Lucchesi, P. J., et al, 10 World Petrol Congress Bucharest Rumania, September 1979, "Magnetically Stabilized Beds - New Gas Solids Contacting Technology". [Pg.292]

Semi-submersible rigs are often referred to as semis , and are a floating type of rig. Like the jack-up, a semi is self contained. The structure is supported by large pontoons which are ballasted with water to provide the required stability and height. The rig is held in position by anchors and mooring lines or dynamically positioned by thrusters. A large diameter steel pipe ( riser ) is connected to the sea-bed and serves as a conduit for the drill string. The blowout preventer (BOP) is also located at the sea-bed ( sub sea stack ). [Pg.33]

The fluid plasticizer (solvent) consists of an energetic compound, eg, nitroglycerin, an inert carrier, and a stabilizer. The system is evacuated to remove volatiles, moisture, and air, and the plasticizer is then pressurized and passed slowly upward through the powder bed while the powder is held stationary by a pressure plate on the powder column. Casting solvent may also be added from the top of the mold. [Pg.47]

The copper-chelating abihty of sahcylaldoxime has been used to remove copper from brine in a seawater desalination plant effluent. A carbon—sorbate bed produced by sorption of the oxime on carbon proved to be extremely effective in the continuous process (99). In another apphcation, the chelating abihty of sahcylaldoxime with iron and copper was used to stabilize bleaching powders containing inorganic peroxide salts (100). [Pg.508]

Figure 2 illustrates the three-step MIBK process employed by Hibernia Scholven (83). This process is designed to permit the intermediate recovery of refined diacetone alcohol and mesityl oxide. In the first step acetone and dilute sodium hydroxide are fed continuously to a reactor at low temperature and with a reactor residence time of approximately one hour. The product is then stabilized with phosphoric acid and stripped of unreacted acetone to yield a cmde diacetone alcohol stream. More phosphoric acid is then added, and the diacetone alcohol dehydrated to mesityl oxide in a distillation column. Mesityl oxide is recovered overhead in this column and fed to a further distillation column where residual acetone is removed and recycled to yield a tails stream containing 98—99% mesityl oxide. The mesityl oxide is then hydrogenated to MIBK in a reactive distillation conducted at atmospheric pressure and 110°C. Simultaneous hydrogenation and rectification are achieved in a column fitted with a palladium catalyst bed, and yields of mesityl oxide to MIBK exceeding 96% are obtained. [Pg.491]

Dry dense medium (pneumatic fluidized-bed) separation has been used, but has not received wide attention by the industry. An area of promise for future development is the use of magnetically stabilized dense medium beds by using ferro or magnetic fluids (2,10). Laboratory and pilot-scale units such as Magstream are available. In this unit, material is fed into a rotating column of water-based magnetic fluid. Particles experience centtifugal forces and... [Pg.407]

Heat Release and Reactor Stability. Highly exothermic reactions, such as with phthaHc anhydride manufacture or Fischer-Tropsch synthesis, compounded with the low thermal conductivity of catalyst peUets, make fixed-bed reactors vulnerable to temperature excursions and mnaways. The larger fixed-bed reactors are more difficult to control and thus may limit the reactions to jacketed bundles of tubes with diameters under - 5 cm. The concerns may even be sufficiently large to favor the more complex but back-mixed slurry reactors. [Pg.519]

Commercially, stabilization is accomplished by controlled heating in air at temperatures of 200—300°C. A variety of equipment has been proposed for continuous stabilization. One basic approach is to pass a fiber tow through heated chambers for sufficient time to oxidize the fiber. Both Mitsubishi and Toho patents (23,24) describe similar continuous processes wherein the fiber can pass through multiple ovens to increase temperature and reaction rate as the thermal stabiUty of the fiber is increased. Alternatively, patents have described processes where the fiber passes over hot roUs (25) and through fluidized beds (26) to provide more effective heat transfer and control of fiber bundle temperature. [Pg.4]

As can be seen in the table above, the upper two results for heat transfer coefficients hp between particle and gas are about 10% apart. The lower three results for wall heat transfer coefficients, h in packed beds have a somewhat wider range among themselves. The two groups are not very different if errors internal to the groups are considered. Since the heat transfer area of the particles is many times larger than that at the wall, the critical temperature difference will be at the wall. The significance of this will be shown later in the discussion of thermal sensitivity and stability. [Pg.22]

The distance above the catalyst bed in which the flue gas velocity has stabilized is refened to as the transport disengaging height (TDH). At this distance, there is no further gravitation of catalyst. The center-line of the first-stage cyclone inlets should be at TDH or higher otherwise, excessive catalyst entrainment will cause extreme catalyst losses. [Pg.152]

The second condition is that the well-dispersed slurry forms a homogeneous bed by formation of the bed under well-controlled conditions. This is achieved by a two-step procedure where the bed is formed using constant velocity of the mobile phase and then stabilizing the bed at a constant pressure (Hagel, 1989). The rationale for the first step at constant velocity is that this will create uniform drag forces from the flowing liquid on the gel particles and thus... [Pg.62]


See other pages where Stabilized bed is mentioned: [Pg.283]    [Pg.642]    [Pg.657]    [Pg.225]    [Pg.416]    [Pg.283]    [Pg.310]    [Pg.204]    [Pg.361]    [Pg.97]    [Pg.797]    [Pg.306]    [Pg.306]    [Pg.283]    [Pg.642]    [Pg.657]    [Pg.225]    [Pg.416]    [Pg.283]    [Pg.310]    [Pg.204]    [Pg.361]    [Pg.97]    [Pg.797]    [Pg.306]    [Pg.306]    [Pg.2789]    [Pg.142]    [Pg.58]    [Pg.380]    [Pg.34]    [Pg.177]    [Pg.457]    [Pg.463]    [Pg.440]    [Pg.173]    [Pg.1597]    [Pg.1605]    [Pg.2064]    [Pg.2150]    [Pg.337]    [Pg.218]    [Pg.229]    [Pg.48]    [Pg.227]    [Pg.6]    [Pg.63]    [Pg.64]   
See also in sourсe #XX -- [ Pg.657 ]




SEARCH



Bedded Down - Thermodynamic Stability

Fluidized bed stabilization

Fluidized catalyst beds stability

Stability fluidized beds

Stability solid-liquid fluidized beds

© 2024 chempedia.info